One of the additional uses of Ausmelt technology is to allow for the recovering of copper from non-sulfide materials, particularly slags and sludges.
Most of the energy for smelting is obtained from oxidizing the concentrate's Fe and S. The vertical lance consists of two pipes-the inner for supplying supplementary hydrocarbon fuel, the annulus for supplying oxygen-enriched air.
One of the additional uses of Ausmelt technology is to allow for the recovering of copper from non-sulfide materials, particularly slags and sludges. Its ability to control air and fuel inputs means that conditions can be changed from oxidizing to reducing without transferring the material to a second furnace. This is particularly effective for smelting Cu/Ni hydrometallurgical residues.
The Technology can be applied to a wide range of applications and uses. This flexibility is due to its inherent ability to be operated and controlled over a wide range of oxygen potentials, from strongly oxidizing, neutral, through to strongly reducing. Operating temperatures range from 900°C (lead) to 1400°C and above (ferrous applications). This flexibility is shown in Figure 2.
Figure 2: Operating Flexibility of Ausmelt Technology
The Ausmelt furnace system is based on the use of a top submerged lance to inject combustion gases and fuel into a molten slag bath. The main features of the technology are illustrated in Figure 3.
Figure 3: Features of Ausmelt Technology
The technology provides a variety of benefits and features including:
Ausmelt and Isasmelt smelting is done in vertically aligned cylindrical furnaces ~3.5 m diameter and 12 m high. The smelting entails:
Most of the energy for smelting is obtained from oxidizing the concentrate's Fe and S. The vertical lance consists of two pipes-the inner for supplying supplementary hydrocarbon fuel, the annulus for supplying oxygen-enriched air. The outer pipe penetrates ~0.3m into the bath. The inner pipe ends ~1 m above the bath. The oxygen-enriched blast is swirled down the lower part of the lance by helical swirl vanes. This causes rapid heat extraction from the lance into the cool blast and solidification of a protective slag coating on the lance`s outer surface. This is a unique feature of the process. The principal product of the furnace is a matte/mixture. It is tapped into a hydrocarbon fired or electric settling furnace. The products, after settling, are 60% matte and 0.7% Cu slag.
Total Materia to wiodąca platforma informacji o materiałach, dostarczająca najobszerniejszych informacji o właściwościach materiałów metalicznych i niemetalicznych oraz innych danych dotyczących materiałów.
Wszystkie te informacje są dostępne w Total Materia Horizon, najlepszym narzędziu do doboru materiałów, zapewniającym niezrównany dostęp do ponad 540 000 materiałów, a także do wyselekcjonowanych i zaktualizowanych danych referencyjnych.
Total Materia Horizon obejmuje: