Fatigue of Metals: Part Two

概要:

The basic method of presenting engineering fatigue data is by means of the S-N curve, a plot of stress S against the number of cycles to failure N. The most important concept is the S-N diagram, in which a constant cyclic stress amplitude S is applied to a specimen and the number of loading cycles N until the specimen fails is determined. Millions of cycles might be required to cause failure at lower loading levels, so the abscissa in usually plotted logarithmically.

Well before a microstructural understanding of fatigue processes was developed, engineers had developed empirical means of quantifying the fatigue process and designing against it. Perhaps the most important concept is the S-N diagram, such as those shown in Figure 1, in which a constant cyclic stress amplitude S is applied to a specimen and the number of loading cycles N until the specimen fails is determined. Millions of cycles might be required to cause failure at lower loading levels, so the abscissa in usually plotted logarithmically.

Figure 1: Typical S-N Curves

High-cycle fatigue, associated with low loads and long life (>103 cycles), is commonly analyzed with a "stress-life" method (the S-N curve), which predicts the number of cycles sustained before failure, or with a "total-life" method (endurance limit), which puts a cap stress that allows the material to have infinite life (>106 cycles).

Low-cycle fatigue, associated with higher loads (plastic deformation occurs) and shorter life (<103 cycles), is commonly used methods called "strain-life" to analyze or predict the fatigue life.

Fatigue cracking is one of the primary damage mechanisms of structural components. Fatigue cracking results from cyclic stresses that are below the ultimate tensile stress, or even the yield stress of the material. The name “fatigue” is based on the concept that a material becomes “tired” and fails at a stress level below the nominal strength of the material. The facts that the original bulk design strengths are not exceeded and the only warning sign of an impending fracture is an often hard to see crack, makes fatigue damage especially dangerous.

Factors Affecting Fatigue Life

In order for fatigue cracks to initiate, three basic factors are necessary. First, the loading pattern must contain minimum and maximum peak values with large enough variation or fluctuation. The peak values may be in tension or compression and may change over time but the reverse loading cycle must be sufficiently great for fatigue crack initiation.

Secondly, the peak stress levels must be of sufficiently high value. If the peak stresses are too low, no crack initiation will occur. Thirdly, the material must experience a sufficiently large number of cycles of the applied stress. The number of cycles required to initiate and grow a crack is largely dependent on the first two factors.

In addition to these three basic factors, there are a host of other variables, such as stress concentration, corrosion, temperature, overload, metallurgical structure, and residual stresses which can affect the propensity for fatigue. Since fatigue cracks generally initiate at a surface, the surface condition of the component being loaded will have an effect on its fatigue life. Surface roughness is important because it is directly related to the level and number of stress concentrations on the surface.

The higher the stress concentration the more likely a crack is to nucleate. Smooth surfaces increase the time to nucleation. Notches, scratches, and other stress risers decrease fatigue life. Surface residual stress will also have a significant effect on fatigue life. Compressive residual stresses from machining, cold working, heat treating will oppose a tensile load and thus lower the amplitude of cyclic loading.

Figure 2 shows typical fatigue stress cycles under various loading conditions.

Figure 2: Typical fatigue stress cycles

ナレッジベース検索

検索したい語句を入力:

検索方法

全文一致
キーワード

前方一致
要約

この記事は連載記事として掲載されております。詳細を見るには下記のリンクをクリックして下さい。

Total Materia Extended Range(拡張版)には数千種の金属合金、熱処理、負荷条件に応じた疲労データならびに繰り返し特性に関する最大のデータベースが収録されております。歪み寿命と応力寿命ともに収録されており、参考としてモノトニック特性、統計的パラメータ、推測値も含まれております。

簡単でしかも数秒以内でデータベースの繰り返し特性を探せます。

検索対象の材料名を入力します。材料入力のフィールドで国/規格を指定し検索を絞る事ができます。’検索’をクリックします。


対象材料を選んでから疲労データのリンクをクリックするとデータが御覧になれます。御覧になれる疲労データの数はリンクわきのカッコ内に表示されております。


Total Materia Extended Range(拡張版)の繰り返し特性は規格それぞれに中立的なものでサブグループのどれが適切なリンクをクリックしてデータを見て下さい。歪み寿命、応力寿命は表形式で表示されグラフ表示される場合もあります。


データソースに関する明確な参照先が表示されますので下記の例を御覧下さい。


Total Materiaデータベースをあなたにテスト評価を頂くために15万人以上の方が登録されている無料お試しコミュニティ-へ御招待致します。