深拉伸用钢:第一部分
非铁合金的热机械处理(TMT):第一部分
DataPLUS 模块提供上万种金属材料和非金属材料的腐蚀数据、焊接性能、尺寸与公差信息以及涂层信息。 点击这里了解更多。
Overview of Total Materia database 2022 年 1月 12日
Overview of Total Materia database 2022 年 1月 13日
在使用Total Materia几个月之后,以及深刻体验过所有潜在功能之后,我非常感谢你们的卓越工作和持续稳定的升级服务。 Total Materia始终是用来达成这一目的唯一工具。
M. Manfredini Bonfiglioli Industrial Gearmotors 博洛尼亚, 意大利
我们的目标很简单,就是让 Total Materia成为全球工程师在材料领域的首选一站式解决方案
Prof. Dr. Viktor Pocajt, CEOKey to Metals AG
The article describes mechanical properties, weld integrity and microstructure of a low carbon steel and a low carbon 12% chromium alloy steel. In general, mechanical testing and metallographic examinations showed good properties and reasonably uniform shaped double-sided weld profiles with no evidence of buried defects.
Cross-weld tensile tests recorded an ultimate tensile stress of around 539 to 541 N/mm2 with failure occurring in the parent metal well away from the joint or the HAZ region as shown in Figure 1. Acceptable transverse face and root bends (bends with first pass in tension and bends with second pass in tension), typically achieved 180°, see Figure 2.
Figure 1: Cross-weld tensile test samples (3 off weld surfaces machined to uniform thickness before testing 3 off as welded)
Figure 2: Typical bend test results in 12 mm thick alloy steel plate, showing parent metal, and first pass and second pass in tension
Metallographic examination of selected sections, typically as shown in Figure 6 (see Friction Stir Welding of Steel: Part Two) shows a reasonably uniform shaped double-sided weld profile with no evidence of buried defects.
Average hardnesses were:
Parent metal - 158HV10 HAZ - 280HV10 TMAZ - 230HV10
The cross-weld tensile tests gave an ultimate tensile stress of around 453 to 457 N/mm with failure occurring in the parent metal well away from the joint or HAZ region, broken tensiles are shown in Figure 3. Transverse 180° side bend tests are shown in figure 14.
Figure 3: Tensile test specimens of carbon steel FSW butt welds, showing failure in the parent metal away from the weld and HAZ
Figure 4: Three 180° side bends in low carbon steel FSW butt joints, plus one comparison parent metal bend
Metallographic examination of selected revealed a flow configuration (see Figure 7 within Friction Stir Welding of Steel-Part Two) not unlike those found on certain aluminium alloy welds. A reasonable shaped weld profile no evidence of buried defects, but some tool wear debris was observed.
Parent metal - 131HV10 HAZ - 149HV10 TMAZ - 158HV10
The weld region exhibited two distinct microstructural zones. One of these is the central weld thermomechanically affected (TMAZ) zone, which had transformed, with associated recrystallisation and grain growth. On both sides of the (TMAZ) central weld zone a HAZ region showed some transformation close to the weld but showed no evidence of grain growth. Further out, towards the parent material, the HAZ still showed a degree of tempering, but had not transformed. The HAZ zones on either side were similar in all features. Typical of this type of steel, the parent material showed a very fine ferritic/martensitic structure.
Within the TMAZ a range of ferrite and martensite structures had developed, a typical example is shown in Figure 5. Some light etching bands were present, towards the top of each weld pass. Energy dispersive x-ray micro analysis of these bands indicated the presence of some tool debris. Longitudinal weld sections, however, confirmed that no measurable reduction in weld depth had occurred after steady state welding conditions had been established. There was no evidence of buried defects within the weld region.
Figure 5: Microstructural bending in TMAZ weld region, showing banded two phase martensite and ferrit structure (12% chromium alloy steel weld)
The microstructure of the parent steel consisted of the expected ferrite.pearlite grains. The subcritical HAZ showed the expected spheroidization of pearlite, and the intercritical HAZ showed substantial grain refinement resulting from the partial transformation to austenite. The higher temperature supercritical HAZ in the centre of the weld had transformed to a bainitic/ferritic microstructure, with no evidence for martensite transformation.
The boundary between the HAZ, and the TMAZ (i.e. the point of which plastic deformation owing to the welding process first occurred) was difficult to identify, as no evidence of deformation without recrystalisation was observed. This suggests that the HAZ/TMAZ boundary occurred in the region heated above the AC3 temperature. This is in accordance with the peak temperature reached during friction stir welding of low carbon steel, which is probably around 1000-1100°C. A typical microstructure from the centre of the weld (in the TMAZ) is shown in Figure 6a, while Figure 6b shows the HAZ in the region of the AC3 isotherm, where areas of partial and complete transformation to austenite during the welding cycle are apparent.
Figure 6a: Banding between partially and completely transformed HAZ in friction stir welding in low carbon steel
Figure 6b: Microstructure of centre of friction stir weld in low carbon steel
Unlike the 12% chromium alloy steel, there was some evidence of tool debris within the weld region of the carbon steel examined, although examination of the tool after welding showed little wear. The debris existed as fine inclusions, exerting no apparent on the microstructure of the weld. It is needed.
The parent hardness of about 131 HV10 increases across the weld to a maximum of 160HV at the centre. These low values suggest the material was in the hot rolled condition before welding.
Date Published: Jul-2008
输入搜索词:
搜索项
全文 关键字
标题 摘要
本文属于一系列文章。点击下面的链接,你可以看到有关这个话题的更多文章。
The Total Materia database contains many thousands of materials suitable for welding applications across a large range of countries and standards.
Where available, full property information can be viewed for materials including chemical composition, mechanical properties, physical properties and carbon equivalent data as well as advice on welding application.
Using the Advanced Search page, define the search criteria by selecting ‘Welding filler materials’ in the Group of Materials pop-up list. It maybe that you need to further narrow the search criteria by using the other fields in the Advanced Search page e.g. Country/Standard.
Then click Submit.
A list of materials will then be generated for you to choose from.
After clicking a material from the resulting list, a list of subgroups derived from standard specifications appears.
From here it is possible to view specific property data for the selected material and also to view similar and equivalent materials in our powerful cross reference tables.
Click on the property data link of interest to you to view specific property data.
For you’re a chance to take a test drive of the Total Materia database, we invite you to join a community of over 150,000 registered users through the Total Materia Free Demo.