The Aluminizing Process

요약:

Surface treatments are an extremely important factor in preventing a wide variety of material failures including fatigue, wear, corrosion and oxidation.
Aluminizing and thermo-chemical diffusion process is carried out at high temperatures, typically in the range of 800–1000°C with a prolonged soaking time to aid the diffusion potential.

The surface of materials is the only part that has to co-exist with the external environment, however, majority of engineering failures originate from the surface which then results in the components failures such as fatigue, wear, corrosion and oxidation. To further improve these surface properties various surface modifications can be done through different techniques through which a suitable coating material is deposited onto the surface.

Aluminizing is a thermo-chemical diffusion treatment where in the surface layer of the material is impregnated with aluminum. It is primarily used on steels, but also on nickel and cobalt based alloys to obtain greater creep resistance, hardness and corrosion resistance.

The aluminizing process is usually operating at a relatively high temperature of 800–1000°C with prolonged soaking time taking into account the diffusion concept. To decrease the grain growth, carbide precipitation and distortion, there are many investigations relating a low-temperature aluminizing process, which is operating at a temperature below 700°C. However, the diffusion rate of aluminum atoms decreases with decreasing temperature, although many concerns are relieved by a low-temperature aluminizing process. Consequently, it cannot be refuted that the aluminizing time will be extended for the low-temperature aluminizing process. Bulk plastic deformation is a way to enhance the diffusion rate as reported in. However, the aluminizing process emphasizes only at the surface and in near-surface regions. Thus, plastic deformation only at the surface and in near-surface regions should be considered to improve the diffusion rate for the thermochemical surface treatments.

There are several techniques that have been used to obtain a layer of aluminium over a steel surface on a commercial scale. These include; electrolytic coating, cladding, pack, gas, spray (metalizing) and hot-dip aluminizing.

Coating Processes

Pack Coating:
Coatings can be applied by pack coating processes, where the compounds containing Al or Cr are placed inside a powder mixture of aluminum oxide and an activator to produce a metal halide vapor. These vapors will deposit on the surface of the work piece.

Vapor Phase Coating:
A more advanced method is to process parts in a vapor phase coating system, where the workpiece is placed above the donor materials, so the surface of the parts will not be contaminated by contact with the powder. Vapor Phase Aluminizing (VPA) and Vapor Phase Chromizing (VPC) are typical coating processes.

Chemical Vapor deposition (CVD):
The most advanced method of coating is to produce the elements to be applied either outside or inside the coating chamber by reacting donor material with halide forming gasses, controlling the rate of deposition by adjusting the temperature and gas flow rates over or through the work piece.

Characteristics:

  • Oxidation resistance
  • Carburization resistance
  • Hydrogen permeation
  • Sulfidation resistance

Applications:

  • Oil and gas tubes and pipes
  • Industrial furnace components
  • Catalyst trays



Figure 1: Aluminizing on Inconel 718


References

1. M.B.Isiko: Aluminizing of plain carbon steel-Effect of temperature on coating and alloy phase morphology at constant holding time, NTNU-Trondheim, Norwegian University of Science and Technology, PhD, July 2012;

2. Chapter 2, Literature Survey, Accessed May 2018;

3. W. Yutanorm, P. Juijerm: Diffusion enhancement of low-temperature pack aluminizing on austenitic stainless steel AISI 304 by deep rolling process, Kovove Mater. 54 2016 227–232, DOI: 10.4149/km 2016 4 227;

4. Gas Turbine Component Coating Systems, Accessed June 2018;

5. Aluminizing, IBC Group, Accessed June 2018;

6. Aluminizing: A great coating for metals used in heat treat processes, 2017, Accessed June 2018.

기술 자료 검색

검색할 어구를 입력하십시오:

검색 범위

본문
키워드

머릿글
요약

Total Materia는 다양한 나라와 규격에 따른 수천개의 알루미늄 재질에 대한 정보를 포함하고 있습니다.

재질의 화학적 조성, 기계적 특성, 물리적 특성, 고급 물성 데이터 등의 전체적인 특성 정보들을 어디서든 검토하실 수 있습니다.

고급 검색을 이용하여, 검색 조건의 재질 리스트에서 '알루미늄'을 선택합니다. 검색 범위 좀 더 줄이기를 원하신다면 국가/규격과 같은 다른 조건을 지정할 수 있습니다.

검색 버튼을 클릭합니다.


선택된 정보에 부합하는 일련의 재질이 검색됩니다.


결과 리스트에서 재질을 선택하시면, 일련의 규격 사양 소그룹이 나타납니다.

여기에서 선택한 재질의 특정 특성 데이터를 검토하실 수도 있고, 강력한 상호 참조 표를 이용하여 유사 재질이나 등가 재질을 검토하는 것 또한 가능합니다.


자세한 특성 데이터를 보시려면 특성 데이터 링크를 클릭하세요.




Total Materia 데이터베이스를 사용해 보실 수 있는 기회가 있습니다. 저희는 Total Materia 무료 체험을 통해 150,000명 이상의 사용자가 이용하고 있는 커뮤니티로 귀하를 초대합니다.