Carbide Free Bainitic (CFB) Steels: Part One

요약:

Development of third generation, advanced high strength steels (AHSS) is well underway and is focused on advancements to provide even more superior strength-ductility ratios than in the currently available materials such as dual phase or TRIP steels.
Carbide free bainitic (CFB) steels may well contribute to these developments and in this article we explore the unique contributions that they can make.

Recently, there has been increased interest in the development of the third generation of advanced high strength steels (AHSS), i.e., steels with strength-ductility combinations significantly better than exhibited by the first generation AHSS i.e. steels that possess primarily ferrite-based microstructures such as dual phase (DP), transformation-induced plasticity (TRIP), complex-phase (CP), and martensitic (MART) steels.

These “3rd Generation” steels are designed to fill the region between the dual-phase/TRIP and the Twin Induced Plasticity (TWIP) steels with very high ductility at strength levels comparable to the conventional AHSS. Enhanced quenching and partitioning (Q&P) steels may be one method to achieve this target. Other ideas include TRIP assisted dual phase steels, high manganese steels and carbide-free bainitic (CFB) steels. Finally the post hardened steels (PHS) are an important component of the strategy of future vehicles.

Carbide-free bainitic (CFB) microstructure of steel contains only two phases, bainitic ferrite and retained austenite (RA). In comparison to conventional lower bainite, any carbide precipitates are not present. First experiments regarding low temperature CFB and discussing this kind of structure were published in early 1980s. Since then, the knowledge about its nature and morphology has been greatly improved, but there are still many scientific issues to resolve. Even though the development of CFB steels is still in progress, few applications have been found, i.e. rails and armours, but there are few other application possibilities, which are investigated by researchers (i.e. railway wheels, ball bearings and elements for the automotive industry).

Design methodologies based on diffusionless bainite transformation theory were applied to develop steels with a carbide-free bainitic (CFB) microstructure consisting of a mixture of bainitic ferrite, retained austenite, and some martensite. Using thermodynamics and kinetics models, CFB steels with a 0.2 and 0.3 wt.% carbon content were designed and manufactured following a conventional hot rolling practice. The designed steels present significant combinations of strength and ductility, with tensile strengths ranging from 1300 to 1800 MPa and total elongations of over 14%.

Earlier developments of CFB steels

Edmonds and co-workers showed that CFB is, in principle, an ideal microstructure from many points of view. An example of the microstructure of CFB is presented in Figure 1; instead of the classical structure of bainitic ferrite laths with interlath carbide, it consists of bainitic ferrite laths interwoven with thin films of untransformed retained austenite. In particular, the steel has a high resistance to cleavage fracture and void formation due to the absence of fine carbides. There is a possibility of simultaneously improving the strength and toughness because of the ultrafine grain size of the bainitic ferrite plates, and of further enhancing the ductility by TRIP effect. Original experiments by Bhadeshia and Edmonds were carried out in order to demonstrate the role of the To curve in greatly influencing the mechanical properties of carbide-free bainitic steels. The experimental alloys developed for this purpose were not necessarily the optimum alloys from the point of view of mechanical properties.



Figure 1: (a) Scanning and (b) transmission electron micrographs of carbide-free bainitic microstructure. M/A is martensite/austenite constituent; B is bainite; αb is bainitic ferrite and γ is retained austenite.


References

1. F. Garcia Caballero, S. Allain, J.-D. Puerta-Velásquez, C. Garcia-Mateo: Exploring Carbide-Free Bainitic Structures for Hot Dip Galvanizing Products, ISIJ International, Vol. 53, No 7, 2013, p. 1253–1259;

2. D. Bhattacharya: Microalloyed steels for the automotive industry, Tecnol. Metal. Mater. Miner., São Paulo, Vol. 11, N°. 4, p.371-383, out./dez. 2014;

3. A. M. Gola, M. Ghadamgahi, S. W. Ooi: Microstructure evolution of carbide-free bainitic steels under abrasive wear conditions, Wear 376-377, 2017, p.975–982;

4. F. G. Caballero et al.: Design of Cold Rolled and Continuous Annealed Carbide-Free Bainitic Steels for Automotive Application, Mater. Des. 49, 2013, p.667–680. doi: 10.1016/j.matdes.2013.02.046.

기술 자료 검색

검색할 어구를 입력하십시오:

검색 범위

본문
키워드

머릿글
요약

Total Materia는 다양한 나라와 규격에 따른 금속학 이미지에 대한 정보를 포함하고 있습니다.

메뉴 표시줄에 특별히 디자인된 금속학 탭을 이용하여, 금속학 데이터가 포함된 관심 재질을 리스트에서 선택하실 수 있습니다.

또한 금속학 데이터는 표준 빠른 검색을 통해 찾을 수 있으며 규격 내 소그룹 페이지를 통해 이용 가능한 관련 자료들이 표시됩니다.

재질명을 '재질'창에 입력하신 후 규격을 알고 계신다면 규격을 선택하고 '검색' 버튼을 클릭합니다.


미세 구조에 대한 일반적인 정보가 관련 관심 재질의 화학 조성과 함께 출력됩니다.


구조의 세부 범위를 보여주는 여러 배율에서의 이미지가 가능하다면 제공됩니다.

다양한 조건을 선택할 수 있으며, '조건 선택' 메뉴를 사용하여 다양한 공정 및 열처리에 따른 금속학 이미지를 보여줍니다.



Total Materia 데이터베이스를 사용해 보실 수 있는 기회가 있습니다. 저희는 Total Materia 무료 체험을 통해 150,000명 이상의 사용자가 이용하고 있는 커뮤니티로 귀하를 초대합니다.