High Chromium Cast Iron: Part One

概要:

High chromium cast irons (HCCI’s) exhibit very good mechanical properties and offer benefits for a range of manufacturing applications.
With carefully controlled heat treatment the cast iron properties can be further influenced to yield higher strength and ductility depending on the desired application.

High-chromium white iron is an erosion resistant ferrous alloy widely used in manufacturing, it has for long been applied to components in mining and minerals industry due to its excellent abrasion resistance, imparted by the hard alloy eutectic carbides present in the microstructure. Furthermore heat treatment can improve properties, all of interest, depending upon the particular applications.

High-chromium irons have good mechanical properties, high hardness in a cast state, low fluctuation of hardness when properties change. High-chromium irons almost don’t concede in fluidity to regular gray cast iron that allows using parts sufficiently difficult form directly after casting without the following machining.



Table 1: Chemical composition of high-chromium wear resistant irons

The mechanical properties of High chromium cast iron HCCI mainly depend on type, size, number, morphology of hard carbides and the matrix structure (γ or α). The hypereutectic HCCI with large volume fractions of hard carbides is preferred to apply in wear applications. However, the coarser and larger primary M7C3 carbides will be precipitated during the solidification of the hypereutectic alloy and these will have a negative influence on the wear resistance.

As mentioned above, high chromium cast irons (HCCIs) are mainly used in mining, milling, earth-handling and manufacturing industries which require materials with exceptional wear and corrosion resistance. The exceptional wear resistance of high chromium cast irons is due to the high volume fraction of hard chromium carbides, although the toughness of the matrix also contributes to the wear resistance. The high controlled percentage of chromium helps to retard the formation of graphite and stabilize the carbides.

The article of D. Kopyciński et al. presents results of heat treatment on the high chromium cast iron. The study was carrying out on samples cut from the casting made from chromium cast iron. Those were hardened at different temperatures, then tempered and soft annealed.

Hardness was measured at three points sample, and two at the edges. Figures 1 and 2 show results of hardness after hardening, tempering Vickers and Rockwell method respectively hardness of as-cast sample.

Test results indicate that with proper selection of heat treatment parameters the hardness and composition of phase microstructure of chromium cast iron can be controlled. Hardening affects positively the hardness of castings, whereas tempering and soft annealing improves ductile properties of chromium cast iron. By adjusting the heat treatment parameters, the material properties can be customized for a particular application. The studies let to determinate the optimum heat treatment for this type of cast iron. The best properties were obtained for hardening at 950°C, for other temperature of heat treatments the hardness increased and exceeded 60 HRC units.



Table 2: Heat treatment parameters for individual samples



Figure 1: The Vickers hardness of the samples tempering and soft annealing, and as-cast



Figure 2: The Rockwell hardness of the samples after hardening, tempering and soft annealing, and as-cast


References

1. N. Poolthong, H. Nomura, M. Takita: Effect of Heat Treatment on Microstructure and Properties of Semi-solid Chromium Cast Iron, Materials Transactions, Vol. 45, No. 3, 2004,p. 880- 887;

2. Sv.S.Kvon, V.Y.Kulikov, T.S.Filippova, E.E.Omarova: Using high-chromium iron as material for production of the equipping components of mine shafts, METALURGIJA, METABK 55,(2),2016, p. 206-208, ISSN 0543-5846;

3. Q.Liu: Microstructure evaluation and wear-resistant properties of Ti-alloyed hypereutectic high chromium cast iron, Doctoral Dissertation, Stockholm 2013, ISBN 978-91-7501-842-3;

4. N. Hussain, A. Kumar, P. Vijayanand: Mechanical Property and Microstructural Variation in Semi-Solid Processed High Chromium Cast Iron, International Journal of Engineering Research & Technology (IJERT), Vol. 3 Issue 7, July – 2014, ISSN: 2278-0181;

5. D. Kopyciński, E. Guzik, D. Siekaniec, A. Szczęsny: Analysis of the High Chromium Cast Iron Microstructure after the Heat Treatment, Archives of Foundry Engineering, Volume 14, Issue 3, 2014, p.43-46,ISSN 1897-3310;

ナレッジベース検索

検索したい語句を入力:

検索方法

全文一致
キーワード

前方一致
要約

Total Materiaは数千種類の材料の機械的特性を収録しておりボタンをクリックするとアクセスできます。

さまざまな特性情報が収録されているので膨大な数の材料の降伏応力、引っ張り応力、伸びデータを簡単に探す事ができます。

検索対象の材料を入力して下さい。材料入力のフィールドで国/規格を指定し検索を絞る事ができます。


Total Materiaは材料のリストから検索対象となる材料が選べるように検索リストを表示します。
検索対象の材料をクリックします。


サブグループのページで機械的特性をクリックすると選ばれた材料の特性が見れます。機械的特性データの数はリンクの隣のカッコの中に表示されております。


機械的特性のデータは選ばれた材料全てについて表示されます。

機械的特性のデータは有効となる条件と処理条件に対応し表示されます。


必要に応じてインチ・ミリ単位の切り替えを行ってください。


Total Materiaデータベースをあなたにテスト評価を頂くために15万人以上の方が登録されている無料お試しコミュニティ-へ御招待致します。