Resilience

Abstrakt:

The ability of a material to absorb energy when deformed elastically and to return it when unloaded is called resilience. This is usually measured by the modulus of resilience, which is the strain energy per unit volume required to stress the material from, zero stress to the yield stress. The toughness of a material is its ability to absorb energy in the plastic range. The ability to withstand occasional, stresses above the yield stress without fracturing is particularly desirable in parts such as freight-car couplings, gears, chains, and crane hooks. Toughness is a commonly used concept, which is difficult to pin down and define.

The ability of a material to absorb energy when deformed elastically and to return it when unloaded is called resilience. This is usually measured by the modulus of resilience, which is the strain energy per unit volume required to stress the material from, zero stress to the yield stress s. The strain energy per unit volume for uniaxial tension is

(1)

From the above definition the modulus of resilience is

(2)

This equation indicates that the ideal material for resisting energy loads in applications where the material must not undergo permanent distortion, such as mechanical springs, is having a high yield stress and a low modulus of elasticity. Table 1 gives some values of modulus of resilience for different materials.

Table 1. Modulus of resilience for various materials

Material E, psi s0, psi Modulus of resilience, Ur
Medium-carbon steel 30×106 45000 33,7
High-carbon spring steel 30×106 140000 320
Duraluminium 10,5×106 18000 17,0
Cooper 16×106 4000 5,3
Rubber 150 300 300
Acrylic polymer 0,5×106 2000 4,0

Toughness

The toughness of a material is its ability to absorb energy in the plastic range. The ability to withstand occasional, stresses above the yield stress without fracturing is particularly desirable in parts such as freight-car couplings, gears, chains, and crane hooks. Toughness is a commonly used concept, which is difficult to pin down and define. One way of looking at toughness is to consider that it is the total area under the stress-strain curve. This area is an indication of the amount of work per unit volume, which can be done, on the material without causing it to rupture. Figure 1.2 shows the stress-strain curves for high- and low-toughness materials. The high-carbon spring steel has a higher yield strength and tensile strength than the medium-carbon structural steel. However, the structural steel is more ductile and has a greater total elongation. The total area under the stresstrain curve is greater for the structural steel, and therefore it is a tougher material. This illustrates that toughness is a parameter that comprises both strength and ductility. The crosshatched regions in Fig. 1 indicate the modulus of resilience for each steel. Because of its higher yield strength, the spring steel has the greater resilience.
Several mathematical approximations for the area under the stress-strain curve have been suggested. For ductile metals that have a stress-strain curve like that of the structural steel, the area under the curve can be approximated by either of the following equations:

(3)

(4)

For brittle materials the stress-strain curve is sometimes assumed to be a parabola, and the area under the curve is given by

(5)

Figure 1. Comparison of stress-strain curves

All these relations are only approximations to the area under the stress-strain curves. Further, the curves do not represent the true behavior in the plastic range, since they are all based on the original area of the specimen.

Durchforschen Sie bitte den Informationsteil der Datenbank

Geben Sie bitte eine Anfrage, um Suche einzuleiten:

Suche nach

Vollständiger Text
Schlüsselwörter

Überschriften
Abstracts

Total Materia Extended Range beinhaltet eine einzigartige Sammlung von Spannungs-Dehnungs-Diagrammen für Berechnungen im plastischen Bereich, für tausende von Metalllegierungen, Wärmebehandlungen und Arbeitstemperaturen. Sowohl das wahre, als auch das nominelle Spannungs-Dehnungs-Diagramm werden, wo passend, für verschiedene Dehnungsgeschwindigkeiten angeboten.

Ein Spannungs-Dehnungsdiagramm in der Datenbank zu finden ist einfach und sekundenschnell.

Geben Sie die Bezeichnung des werkstoffs der Sie interessiert in das Feld der Schnellsuche ein. Sie können auch, falls erwünscht, Ihre Suche weiter einschrenken indem Sie eine Norm/Land in das vorgesehene Feld eingeben, bevor Sie Ihre Suche absenden.


Nachdem Sie den Werkstoff der Sie interessiert, ausgesucht haben, klicken Sie auf den Link der Spannungs-Dehnungsdiagramme um die Daten für diesen Werkstoff zu sehen. Die Anzahl der zur Verfügung stehenden Daten der physikalischen Eigenschaften ist neben dem Link, in Klammern, angegeben.


Da Total Materia Spannungs-Dehnungsdiagramme unabhänig von den Normen sind, können Sie diese anzeigen indem Sie auf den entsprechenden Link jedweder Untergruppe klicken.

Neben den Spannungs-Dehnungsdiagrammen bei verschiedenen Temperaturen, sind Belastung und Materialspannung auch in Tabellenform angezeigt, was praktisch ist um diese zu kopieren, zum Beispiel für CAE Software.


Es ist auch möglich, Spannungs-Dehnungsdiagramme und Daten für andere Arbeitstemperaturen zu sehen.

Hierzu, geben Sie einfach eine neue Temperatur, inerhalb der definierten Spanne, in das entsprechende Feld ein.

Nachdem Sie auf den Button "Berechnen" geklickt haben, wird eine neue Kurve angezeigt und die Daten der Tabelle entsprechen nun der Temperatur die Sie festgelegt haben. Sehen Sie untenstehend ein Beispiel bei 250°C.


Um unsere Datenbank auszuprobieren, laden wir Sie ein sich unserer Nutzergemeinschaft von über 150 000 angemeldeten Benutzern, mit einem kostenlosen Probeaboanzuschliessen.