深拉伸用钢:第一部分
非铁合金的热机械处理(TMT):第一部分
DataPLUS 模块提供上万种金属材料和非金属材料的腐蚀数据、焊接性能、尺寸与公差信息以及涂层信息。 点击这里了解更多。
Overview of Total Materia database 2022 年 1月 12日
Overview of Total Materia database 2022 年 1月 13日
在使用Total Materia几个月之后,以及深刻体验过所有潜在功能之后,我非常感谢你们的卓越工作和持续稳定的升级服务。 Total Materia始终是用来达成这一目的唯一工具。
M. Manfredini Bonfiglioli Industrial Gearmotors 博洛尼亚, 意大利
我们的目标很简单,就是让 Total Materia成为全球工程师在材料领域的首选一站式解决方案
Prof. Dr. Viktor Pocajt, CEOKey to Metals AG
Known also by a range of synonyms, Stress-Relief Cracking (SRC) is intergranular cracking in the heat affected zone (HAZ) or weld metal that occurs during exposure to in-service temperatures or post-weld heat treatments. The different impurities and tramp elements have a direct impact, mostly detrimental, on the SRC process and we explore further each element and how they affect the materials overall susceptibility to stress relief cracking.
During the application of such a heat treatment to the weld HAZ of Cr - Mo - V steels, carbides are precipitated from the supersaturated solid solution in a manner similar to that which would occur in a normal tempering operation. The type and morphology of the carbide precipitates depend in detail upon the composition of the parent plate and of the weld metal, and on the temperature of the stress relieving heat treatment. Many workers, have observed that a stress relief heat treatment of welded low, alloy steel results in increased precipitation of fine alloy carbides within the matrix of the weld HAZ. The occurrence of precipitate free zones adjacent to the grain boundaries has also been reported in some investigations, but not in a consistent manner.
Stress relief cracking is a common cause of weld failures in many creep resistant precipitation strengthened alloys. The general definition of SRC is intergranular cracking in a welded assembly that occurs during exposure to elevated temperatures produced by post-weld heat treatments (PWHT) or high temperature service. The coarse-grained heat-affected zone (CGHAZ) is the most susceptible region of a weldment. SRC occurs mainly in ferritic alloy steels.
Alloying and tramp elements can have a large influence on the stress-relief cracking susceptibility of a material. Mo, V, and Cr are commonly added to steels to improve mechanical properties, but it is also these elements that form carbides that precipitate in the grain interiors during post-weld heat treatment and increase the susceptibility to stress-relief cracking. In general, those elements that promote the formation of detrimental M2C and M4C3 carbides or act as grain boundary embrittling elements increase the susceptibility to SRC. Elements generally considered to be detrimental to SRC are Mo, V, C, Nb, Cu, AI, and tramp elements such as S, P, Sb, As, and Sn.
Alloying elements or impurity elements can generally be placed into one of five categories: 1) promoters of segregation that act as co-segregators with impurities such as Mn; 2) promoters of segregation that do not segregate such as Cr; 3) scavengers that prohibit segregation such as Ti and Mo; 4) grain boundary embrittlers such as Si, P, S, As, Sn, Sb; 5) improve grain boundary cohesion such as carbon;
Table 1 seen below is a brief summary of the effects of each element with respect to stress-relief cracking susceptibility:
References 1. R. A. Tait: Stress relief cracking in creep resisting low alloy ferritic steels, PhD Dissertation, July 1976, University of Cambridge, Stress Relief racking - Bob_Tait.pdf, Accessed August 2020; 2. Y. Jin, H. Lu, C. Yu, Y. Liu: Stress-relief cracking susceptibility and Microstructural Characteristics of Modified T23 Steel, Transactions of JWRI, Special Issue on WSE2011, 2011, p.45-46; 3. J. G. Nawrocki: A study on the stress-relief cracking susceptibility of a new ferritic steel, These and Dissertation, Lehigh University, 1998, Paper 513, Accessed May 2020;
Date Published: Oct-2021
输入搜索词:
搜索项
全文 关键字
标题 摘要
Total Materia Extended Range includes the largest database of fracture mechanics parameters for hundreds of metal alloys and heat treatments conditions. K1C, KC, crack growth and Paris law parameters are given, with the corresponding graph of crack growth.
Monotonic properties are added for the reference, as well as estimates of missing parameters based on monotonic properties where applicable.
Enter the material of interest into the quick search field. You can optionally narrow your search by specifying the country/standard of choice in the designated field and click Search.
After clicking the material from the resulting list, a list of subgroups that are standard specifications appears.
Because Total Materia Extended Range fracture mechanics parameters are neutral to standard specifications, you can review fracture mechanics data by clicking the appropriate link for any of the subgroups.
The data are given in a tabular format, with the Paris curve (Region II) where applicable. Explicit references to the data sources are given for each dataset.
For you’re a chance to take a test drive of the Total Materia database, we invite you to join a community of over 150,000 registered users through the Total Materia Free Demo.