深拉伸用钢:第一部分
非铁合金的热机械处理(TMT):第一部分
DataPLUS 模块提供上万种金属材料和非金属材料的腐蚀数据、焊接性能、尺寸与公差信息以及涂层信息。 点击这里了解更多。
Overview of Total Materia database 2022 年 1月 12日
Overview of Total Materia database 2022 年 1月 13日
在使用Total Materia几个月之后,以及深刻体验过所有潜在功能之后,我非常感谢你们的卓越工作和持续稳定的升级服务。 Total Materia始终是用来达成这一目的唯一工具。
M. Manfredini Bonfiglioli Industrial Gearmotors 博洛尼亚, 意大利
我们的目标很简单,就是让 Total Materia成为全球工程师在材料领域的首选一站式解决方案
Prof. Dr. Viktor Pocajt, CEOKey to Metals AG
Medium manganese steels should be considered in the same circles of many of the technologically focused and well known materials in the automotive industry such as AHSS, DP, CP as well as second generation steels. Medium-Mn steels show a strong tendency for transformation-induced plasticity (TRIP) or twinning induced plasticity (TWIP) depending on the stability of the retained austenite.
First-generation advanced-high-strength steels (AHSS) have been developed by creating and modifying additional strengthening phases in the ferritic microstructure, like dual-phase (DP) steels, complex-phase (CP) steels, conventional transformation-induced-plasticity (TRIP) steels and martensitic steels. The second generation AHSS have been intensively studied since the 2000s. The second-generation AHSS are mainly high-manganese steels with austenitic single-phase microstructures. Taking advantage of various deformation mechanisms in high-Mn steels, such as dislocation slipping (SLIP), transformation-induced plasticity (TRIP), twinning-induced plasticity (TWIP) and microband-induced plasticity (MBIP), the second-generation AHSS manifest extreme ductility (total elongation up to 60%)with high strength (ultimate tensile strength up to 1100MPa). Although the high strength can be achieved in the first generation AHSS, the ductility is limited.
The high amount of alloying content in the second-generation AHSS has raised production cost and created various drawbacks in the production processes, for instance, Al2O3 formation during casting process, serious macrosegregation and microsegregation due to high carbon and manganese content, challenges to hot dip galvanization because of Al2O3 and MnO surface layer formation during continuous annealing, etc.
Efforts of the automotive industry to reduce carbon emissions of their vehicles has led to the development of a third generation of advanced high strength steel (AHSS) called “Medium-Mn” steels. Medium-Mn steels are capable of displaying transformation-induced plasticity (TRIP) or twinning induced plasticity (TWIP) depending on the stability of the retained austenite. By varying the annealing temperature used (within the intercritical ferrite+austenite region), one can change the stability of the austenite phase and make it more or less susceptible to either TRIP or TWIP.
While it is possible to simulate the microstructure that should be obtained for a certain composition and thermal treatment schedule, it is more difficult to accurately predict the mechanical properties of the steel due to the highly localized stresses/strains that can occur with TRIP and TWIP. It is thus of interest to understand the kinetics of the TRIP phenomenon as a function of strain if one wishes to properly simulate the mechanical behavior for a given microstructure or to correlate TRIP to the stability of the austenite via its stacking fault energy (SFE).
Microstructure of medium manganese steel annealed at low temperature is shown in The Figure 1. The phase in relief is austenite. The average grain size is roughly 0.45μm.
As seen in Figure 1, the microstructure contains austenite in a ferrite matrix. The exact morphology of the microstructure is unknown; it must be confirmed whether it consists of austenite "islands" completely surrounded by ferrite or if the two phases are intertwined. This will be accomplished by progressive focused ion beam (FIB) erosions and electron backscatter (EBSD) analyses of phase distributions and crystallographic orientations.
The main alloying elements in medium-Mn steels are manganese, carbon, aluminium and silicon. Manganese and carbon are strong austenite stabilisers. The carbon content is generally around 0.05–0.4 wt-% in medium-Mn steels. The high carbon content possibly leads to cementite precipitation, and cementite networks could cause intergranular fracture along austenite boundaries. In addition, the high carbon content has a detrimental effect on the weldability of steels, when martensite could form during cooling after welding. In medium-Mn steels, manganese is the most important alloying element, which can effectively stabilise the austenite phase.
It usually contains 4–12 wt-% manganese in medium-Mn steels. On the one hand, the addition of manganese can lower the A1 temperature and increase the process window. On the other hand, manganese is intended to increase the hardenability and strongly reduce the critical cooling rate in steels. However, the addition of manganese may also result in poor weldability of steels. Moreover, the manganese concentration in medium-Mn steels is a crucial parameter controlling the deformation mechanisms.
Medium-Mn steels with manganese content lower than 9 wt-% were reported to exhibit deformation-induced α’-martensite phase transformation, which were named as medium-Mn TRIP steels. More recently, medium-Mn steels with a higher manganese content
References 1. Y. Ma: Medium-manganese steels processed by austenite-reverted transformation annealing for automotive applications, Materials Science and Technology, 33:15, 2017, p.1713-1727, DOI: 10.1080/02670836.2017.1312208; 2. M. Callahan, O. Hubert, J-H Schmitt: Quantification of TRIP Kinetics in Medium Mn Steels by in-situ Magnetic Measurements, 3rd International Conference on High Manganese Steels (HMnS2016), Nov 2016, Chengdu, China. 2016, Proceedings of the 3rd International Conference on High Manganese Steels, hal-01560742; 3. M. Callahan, J-H. Schmitt: Characterization and Simulation of Deformation Deformation-Induced Martensitic Transformations in Medium-Manganese Steels, 22ème Congrès Français de Mécanique Lyon, 24-28 Août 2015.
Date Published: Dec-2018
输入搜索词:
搜索项
全文 关键字
标题 摘要
Finding chemical composition data in the Total Materia database couldn’t be easier.
Within seconds it is possible for you to find useful chemical composition data for over 175,000 materials in the database.
Enter the material of interest into the quick search field. You can optionally narrow your search by specifying the country/standard of choice in the designated field and click Search.
Total Materia will generate the search list for you to select the material of interest from the material list. Click on the material of interest.
On the subgroup page, click the composition link to view chemical composition data for the selected material. The number of chemical composition data records is displayed in brackets next to the link.
The chemical composition data will be then be displayed along with all selected material information for your reference.
For you’re a chance to take a test drive of the Total Materia database, we invite you to join a community of over 150,000 registered users through the Total Materia Free Demo.