深拉伸用钢:第一部分
非铁合金的热机械处理(TMT):第一部分
DataPLUS 模块提供上万种金属材料和非金属材料的腐蚀数据、焊接性能、尺寸与公差信息以及涂层信息。 点击这里了解更多。
Overview of Total Materia database 2022 年 1月 12日
Overview of Total Materia database 2022 年 1月 13日
在使用Total Materia几个月之后,以及深刻体验过所有潜在功能之后,我非常感谢你们的卓越工作和持续稳定的升级服务。 Total Materia始终是用来达成这一目的唯一工具。
M. Manfredini Bonfiglioli Industrial Gearmotors 博洛尼亚, 意大利
我们的目标很简单,就是让 Total Materia成为全球工程师在材料领域的首选一站式解决方案
Prof. Dr. Viktor Pocajt, CEOKey to Metals AG
Micro parts are increasingly common where the requirement is to manufacture miniaturized and sometimes complex geometries in the submillimeter range. Some of the parts which can be fabricated using these processes include among others connector pins, miniature screws, microgears, microshafts.
The increasing demand for powerful miniaturized products for all industrial applications has prompted the industry to develop new and innovative manufacturing processes to fabricate miniature parts. One of the major challenges facing the industry is the dynamic market which requires continuous improvements in design and fabrication techniques. This means providing products with complex features while sustaining high functionality.
Micro parts are defined as parts that have at least two dimensions in the submillimeter range.
Microforming is a manufacturing process to produce miniature parts for various engineering applications. The parts manufactured by the microforming technology are commonly used in everyday life, such as consumer electronics, mobile phone, and etc. . Also, the microforming technology is receiving increasing interest from micro system technology (MST) or medical sectors. Although some of the parts are currently being produced by microforming technology, but still now the major numbers of these parts are produced using conventional manufacturing process. For small quantities conventional process may be applicable, if asked for large quantities, microforming technology seems to be appropriated due to its well known advantages.
Microforming, as one of the micro manufactiring processes, provides a promising approach to fabricating metallic microparts, such as connector pin, miniature screw, microgear, microshaft, chip lead frame, and IC-socket. Figure 1 shows some microparts and the parts with microfeatures made by microforming processes.
In microforming, the material deformation behavior is different from that in macroforming. It is generally difficult to predict and control the microscale material deformation behavior due to the small size of deformed parts. In this process, there are four interactive factors affecting the material deformation, namely tooling-workpiece interface condition, as shown in Figure 2. In addition, they further affect the performance of microforming system and the quality of the microformed parts in terms of deformation load, stability of the forming system (scatter of process variables), defect formation, dimensional accuracy, mechanical properties and surface finish of the formed microparts. Furthermore, the realization of microforming processes in laboratories is different from that in mass production [30]. Product quality and productivity are two major concerns in the latter. Good product quality and high productivity can be achieved with a properly designed process chain.
References 1. Shuaib, Nasr AbdelRahman: An Investigation of size effects on thin sheet formability for microforming applications, 2008, University of Kentucky Doctoral Dissertations. 680.; 2. M.A.M. Hossain, K.Y. Park and S.T. Hong: Superplastic Behavior of Al5083 Alloy during Microforming Process, Proceedings of the 2010 International Conference on Industrial Engineering and Operations Management Dhaka, Bangladesh, January 9 – 10, 2010, p.732-737; Accessed July 2017 3. M.W.Fu, W.L.Chan: Micro-scaled products development via microforming, Springer series in Advanced Manufacturing, DOI: 10.1007/978-1-4471-6326-8-4, London 2014, Chapter 4: Microforming processes;
Date Published: Aug-2017
输入搜索词:
搜索项
全文 关键字
标题 摘要
The Total Materia database contains a large number of metallography images across a large range of countries and standards.
Using the specifically designed Metallography tab in the menu bar, you can select the material of interest to you from the list of materials with metallography data included.
Metallography data can also be found through our standard quick search and will show relevant data is available through the standard Subgroup page for the material of interest.
Simply enter your material designation in to the "Material" field and select the standard of interest if known, then click "Search".
General information on microstructure can be found along with the relevant chemical composition for the material of interest.
Where available, a series of images will be provided showing a range of structural detail at various levels of magnification.
It is also possible to select different condition options from the "Select condition" drop-down to show metallography images under different process and heat treatment states.
For you’re a chance to take a test drive of the Total Materia database, we invite you to join a community of over 150,000 registered users through the Total Materia Free Demo.