Boron-Modified Titanium Alloys: Part One

요약:

It might seem impossible to improve upon the impressive properties of modern titanium alloys, but the addition of a common element can multiply at least one property, stiffness, by a factor of five.
What’s more, it might also reduce production costs. The secret is in boron’s unique behavior when combined with different phases of titanium.

Since the introduction of titanium and titanium alloys in the early 1950s, these metals have become backbone materials for the aerospace, energy, and chemical industries.

Titanium alloys are among the most important of advanced materials, due to their excellent properties, such as low mass density, which is approximately 60% of the value of common steels, high resistance to oxidation, lightness, stiffness, high specific modulus and creep resistance. Titanium alloys are characterized by their superlative mechanical properties, good resistance to corrosion in many different aggressive environments, good resistance to wear, fatigue and creep resistance, good biocompatibility and high Strength at relatively high temperatures, low Young’s modulus (similar to that of human bone). As mentioned above, titanium alloys are employed in many applications: in aerospace, automotive industries, chemical industries and many biomedical applications used to fabricate surgical tools and dental implants. The increasing demand for titanium alloys in world production, the refinement of the processes and the new techniques developed have allowed a reduction of the production costs and better fulfillment of the demand.

Small additions of boron to conventional titanium alloys have been found to produce significant changes to the microstructures and associated properties. Grain refinement and improved strength and stiffness are first order effects, which lead to possibilities for developing novel and affordable processing methodologies and to enhance performance over conventional titanium alloys.

The Ti-B Material System

Boron is completely soluble in the liquid phase of titanium, but is essentially insoluble in the solid titanium phase (high temperature beta or room temperature alpha). The relative insolubility of boron in solid titanium eliminates the embrittlement problem commonly caused by other interstitial elements such as hydrogen, carbon, or oxygen. The titanium-rich end of the binary Ti-B phase diagram is shown in Figure 1.



Figure 1: Titanium-rich section of the binary Ti-B phase diagram.

The boron added to titanium precipitates in the form of an intermetallic TiB phase for additions below about 14 wt%. (40 at.%). TiB forms via the eutectic reaction L—>β+TiB, with a binary eutectic composition of 2 wt% B. The TiB phase offers unique advantages. The density of TiB is comparable to that of titanium, but the stiffness is about five times higher. Therefore, the TiB phase provides significant increases in strength and stiffness without increasing density. TiB also has excellent crystallographic compatibility with titanium, providing atomically sharp interfaces and chemical compatibility. The coefficient of thermal expansion of TiB is comparable to that of titanium, which eliminates residual stresses at the interfaces.

The crystal structure of TiB is orthorhombic, and particles grow as short whiskers about one micron in diameter and ten microns long that are efficient strengtheners below the eutectic limit (1.55 wt.%B for the most widely used titanium alloy Ti-6Al-4V). Hypoeutectic alloys have microstructures, processing, and property combinations similar to alloys without boron. Therefore, Ti-B materials can be considered as boron-modified titanium alloys at boron levels below the eutectic limit.



Figure 2: Several different processing routes are available to produce Ti-B alloys and various techniques can fabricate product forms.


References

1. S. de Waziers, S. Roy, S. Suwas, S. Tamirisakandala, R. Srinivasan, D.B. Miracle: Chapter 33, Solidification Microstructure and Texture in Grain-Refined Titanium Alloys, In: Haldar A., Suwas S., Bhattacharjee D. (eds) Microstructure and Texture in Steels. Springer, London,2009, DOI Print ISBN 978-1-84882-453-9, Online ISBN 978-1-84882-454-6;

2. K. Alaeddine, B. Khedidja: Electrochemical Boriding of titanium alloy Ti-6Al-4V, jmaterrestechnol., 8(6), 2019, p.6407–6412;

3. S. Tamirisakandala, D.B. Miracle, R. Srinivasan, J. S. Gunasekera: Titanium Alloyed with Boron, Advanced Materials and Processes, 2006, 164, 12, p.41-43.

기술 자료 검색

검색할 어구를 입력하십시오:

검색 범위

본문
키워드

머릿글
요약

Total Materia는 다양한 나라와 규격에 따른 수천개의 티타늄 재질에 대한 정보를 포함하고 있습니다.

재질의 화학적 조성, 기계적 특성, 물리적 특성, 고급 물성 데이터 등의 전체적인 특성 정보들을 어디서든 검토하실 수 있습니다.

고급 검색을 이용하여, 검색 조건의 재질 리스트에서 '티타늄'을 선택합니다. 검색 범위 좀 더 줄이기를 원하신다면 국가/규격과 같은 다른 조건을 지정할 수 있습니다.

검색 버튼을 클릭합니다.


선택된 정보에 부합하는 일련의 재질이 검색됩니다.


결과 리스트에서 재질을 선택하시면, 일련의 규격 사양 소그룹이 나타납니다.

여기에서 선택한 재질의 특정 특성 데이터를 검토하실 수도 있고, 강력한 상호 참조 표를 이용하여 유사 재질이나 등가 재질을 검토하는 것 또한 가능합니다.


자세한 특성 데이터를 보시려면 특성 데이터 링크를 클릭하세요.

Total Materia 데이터베이스를 사용해 보실 수 있는 기회가 있습니다. 저희는 Total Materia 무료 체험을 통해 150,000명 이상의 사용자가 이용하고 있는 커뮤니티로 귀하를 초대합니다.