The Vacuum Die Casting (VDC) Process: Part One

요약:

Vacuum die casted materials have many applications in the automotive industry as well as a number of other commercial industrial sectors.
The main benefits of VDC as opposed to other more traditional methods of casting include a higher quality surface finish, improved mechanical properties and an overall better finished product stability.

Die casting is the process where molten metal is injected into the cavity of a metallic die, held for a period sufficient for adequate solidification and then released; has been used widely in various industries, most commonly the automotive and commercial industries. Because of the rapid cooling rates and fine grain sizes combined with the ability to precision machine the die cavity and exploit high injection pressures the die casting process has many advantages over other metal forming processes.

These process benefits include improved mechanical properties over conventional casting processes, good surface finish, short cycle times, high volume capacity, good repeatability and dimensional stability. The most commonly used alloys in this process are aluminum, zinc, magnesium and to a lesser extent copper.

There are several types of die casting processes. Various processes are now in use to achieve both economically and technologically viable castings production. The variety of methods results from the different ways in which gas can be eliminated from the cavity, how the injection system works or how much heat is lost during the process.

Through vacuum die casting, it is possible to produce high-quality thin-walled parts with expected and repeatable mechanical properties, with or without heat treatment or welding. Vacuum die casting was first used in Japan and it extended rapidly around the world. Vacuum die casting has some important advantages: the vacuum systems remove the air from the cavity reducing gas porosity. In addition, very thin sections can be casted easily; good surface finishing properties and appearance can be obtained with no need for further machining.

Using this technique, casting defects are low and the rejection of the component is reduced. The general principle is the same as in low-pressure die casting. Depending on the alloy used, the required properties can be achieved in vacuum die casting even without additional heat treatment; but whenever such treatment is required, it will produce superficial defects in the presence of even minor gas porosity, which are usually not tolerated on the final product.

Figure 1 shows a schematic of the Vacuum die casting VDC process. It is important to note the entire melting, pouring and injection process in conducted under stringent vacuum controls. The part is exposed to atmosphere only after complete solidification has occurred.



Figure 1: Schematic of Vacuum Die Casting System

The application of vacuum die casting to superalloy materials offers the potential to develop novel refined material microstructures for a broad range of alloy compositions. As would be expected due to the presence of a refined grain size, the mechanical properties of material traditionally produced via investment casting for turbine blade applications show improved tensile and reduced stress rupture capability. Wrought high volume fraction γ’ disk alloys exhibit reduced strength and significantly enhanced stress properties.

The highest temperature capability structural casting alloy (Inco 939) shows improved strength and reduced stress rupture life. The combination of mechanical property balance ability to fabricate complex shapes should offer the opportunity to exploit die cast superalloys in niche applications in the temperature range of 649°C to 816°C if reasonable rupture capability is required. To be successful, the process must offer an economic as well as technical advantage. Improvements to casting quality would be required to meet aerospace requirements and it is highly likely that this could be achieved with investment in the technology.


References

1. J. J. Schirra, C. A. Borg, R. W. Hatala: Mechanical property and microstructural characterization of vacuum die cast superalloy materials, Superalloys 2004, Edited by K.A. Green, T.M. Pollock, H. Harada, T.E. Howson, R.C. Reed, J.J. Schirra, and S, Walston, TMS (The Minerals, Metals & Materials Society), 2004;

2. I. Peter, M. Rosso: Light Alloys — From Traditional to Innovative Technologies, INTECH, Accessed Jan 2018.

기술 자료 검색

검색할 어구를 입력하십시오:

검색 범위

본문
키워드

머릿글
요약

Total Materia는 다양한 나라와 규격에 따른 수천개의 주조 재료에 대한 정보를 포함하고 있습니다.

재질의 화학적 조성, 기계적 특성, 물리적 특성, 고급 물성 데이터 등의 전체적인 특성 정보들을 어디서든 검토하실 수 있습니다.

고금 검색 내 규격 설명 기능을 이용하여, 규격 내 재질에 설명된 키워드를 통해 재질을 검색하실 수 있습니다.

검색 범위 좀 더 줄이기를 원하신다면 국가/규격과 같은 다른 조건을 지정할 수 있습니다.

검색 버튼을 클릭합니다.


선택된 정보에 부합하는 일련의 재질이 검색됩니다.


결과 리스트에서 재질을 선택하시면, 일련의 규격 사양 소그룹이 나타납니다.

여기에서 선택한 재질의 특정 특성 데이터를 검토하실 수도 있고, 강력한 상호 참조 표를 이용하여 유사 재질이나 등가 재질을 검토하는 것 또한 가능합니다.


예를 들어, 소그룹 내 화학적 조성 링크를 클릭하시면, 재질의 화학적 조성 데이터를 검토하실 수 있습니다.

Total Materia 데이터베이스를 사용해 보실 수 있는 기회가 있습니다. 저희는 Total Materia 무료 체험을 통해 150,000명 이상의 사용자가 이용하고 있는 커뮤니티로 귀하를 초대합니다.