As one of the primary semi-solid processing routes, Thixocasting allows the forming of alloys into near-net shaped products with improved mechanical and aesthetic characteristics to be produced.
Although now widely used there are some key aspects of this processing technology which must be adhered to in order to ensure the quality of the finished products is maintained including liquid fraction/semi solid temperature, injection speed, injection pressure and die temperature.

Semi-solid metal processing offers several advantages over conventional technologies such as casting, forging and powder metallurgy. Semi-solid metal processing enables the manufacturing of components with complex shapes, with thin walls, with good mechanical properties and with a high dimensional tolerance and accuracy. The thixocasting process uses stirring of the melt during the solidification of a continuous cast bar to obtain the globulitic microstructure.

The thixocasting process is a semi-solid metal processing route (SSM), which involves forming of alloys in the semi-solid state to near-net-shaped products.

The process of thixocasting offers a number of advantages, such as improved mechanical properties, good surface finish, near net shape and so on. However, the thixocasting process has also a number of disadvantages, such as the need for special feedstock with near spherical primary crystals. In order to cast such special billets for thixocasting one has to pay a more expensive premium than normal. Eliminating this additional specialized casting step leads to savings in both costs and time.

Compared with the conventional casting technologies, thixocasting has a lower forming temperature, significantly longer die life, high part precision, production efficiency and comprehensive mechanical properties. As compared with hot forging technologies, thixocasting has quite a low yield strength, high fluidity, low forming load and low surface roughness. Especially in the thixocasting process, a complex geometry product can be obtained by only one step forming. This technology has been widely applied in nonferrous metal forming and satisfactory results were derived, but not with ferrous metal.

Table 1: Production parameters for thixocasting

In the investigation of Killicli V. et al. it is shown that there are microstructural features of casting defects in AA7075 aluminum alloy produced by thixocasting.

The thixocasting process was conducted using a cold chamber high pressure die casting machine using a medium frequency induction heating generator. Specimens were formed at 611°C which correspond to 50% liquid fraction and different injection speeds at constant die temperature (150°C). The liquid fraction was calculated from DTA data. The experimental set-up of thixocasting process is schematically represented in Figure 1.

Figure 1: Schematic representation of experimental set-up for the thixocasting process

AA7075 alloy part produced by thixocasting illustrates in Figure 2. Specimens were prepared by standard metallographic procedures and polishing with up to 0.1 μm colloidal silica and etching with Keller’s reagent. Microstructural features were studied using a Leica DM400M optical microscope and Jeol JSM 6060LV scanning electron microscope (SEM).

Figure 2: AA7075 alloy part produced by thixocasting

Experimental results indicate that the many casting defects such as microporosity, microshrinkage, dendritic solidification in liquid pool, hot tearing in liquid phase, microsegregation at grain boundaries and liquid segregation in the sharp corner of the die were observed in the microstructure of the AA7075 aluminum alloy produced by thixocasting. The lower mechanical properties of thixocast AA7075 alloys can be attributed to casting defects. To avoid these casting defects the thixocasting process parameters (liquid fraction/semi solid temperature, injection speed, injection pressure and die temperature) must be controlled tightly.

기술 자료 검색

검색할 어구를 입력하십시오:

검색 범위



Total Materia는 다양한 나라와 규격에 따른 수천개의 주조 재료에 대한 정보를 포함하고 있습니다.

재질의 화학적 조성, 기계적 특성, 물리적 특성, 고급 물성 데이터 등의 전체적인 특성 정보들을 어디서든 검토하실 수 있습니다.

고금 검색 내 규격 설명 기능을 이용하여, 규격 내 재질에 설명된 키워드를 통해 재질을 검색하실 수 있습니다.

검색 범위 좀 더 줄이기를 원하신다면 국가/규격과 같은 다른 조건을 지정할 수 있습니다.

검색 버튼을 클릭합니다.

선택된 정보에 부합하는 일련의 재질이 검색됩니다.

결과 리스트에서 재질을 선택하시면, 일련의 규격 사양 소그룹이 나타납니다.

여기에서 선택한 재질의 특정 특성 데이터를 검토하실 수도 있고, 강력한 상호 참조 표를 이용하여 유사 재질이나 등가 재질을 검토하는 것 또한 가능합니다.

예를 들어, 소그룹 내 화학적 조성 링크를 클릭하시면, 재질의 화학적 조성 데이터를 검토하실 수 있습니다.

Total Materia 데이터베이스를 사용해 보실 수 있는 기회가 있습니다. 저희는 Total Materia 무료 체험을 통해 150,000명 이상의 사용자가 이용하고 있는 커뮤니티로 귀하를 초대합니다.