Semi-Solid Processing (SSP) of Alloys: Part One


The semi-solid processing of alloys is a relatively new commercial process which moved from a laboratory curiosity to a fully-fledged and viable manufacturing route in the 1970’s.
Lying between established solid and liquid state techniques, SSP allows the associated costs of solid state processing to be controlled and provides all the advantages of superior mechanical properties due to the precise changes in microstructure resulting from the slurry production steps.

Today’s engineer can select from numerous techniques of manufacturing net-shape components using metals and their alloys. The majority of these techniques, in principle, could be classified into two conventional routes restricted to either the solid or liquid state. The liquid-state methods involve casting with a variety of modifications: gravity, high-pressure die casting, squeeze casting, etc..

In contrast, the solid-state techniques generally require multi-step operations after casting, such as homogenization of chemistry, hot working, cold working, forming, machining, or heat treatment. As a result, the properties of wrought components are predominantly superior to castings. The number of manufacturing steps and their complexity, however, contribute to a significantly higher cost of the final product. The economy factor represents the downside of many non-conventional manufacturing techniques (e.g., powder metallurgy). Thus, there is a continuous quest for a technology that would reduce costs and at the same time improve properties.

Semi-solid processing of alloys originated at the MIT Materials Engineering laboratories in the early 70's. Since then it has progressed from a laboratory curiosity, to a fully commercial process for the production of near net shape components in a variety of materials and for a diverse industrial clientele.

The main thrust of commercial development has taken place in the use of aluminum alloys, and to a lesser extent copper and magnesium alloys. However the ability of the process to shape almost any alloy to a near net shape product in a single operation, provides it with tremendous advantages over its competitors. The advantages are accentuated when shaping high melting point alloys such as tool steels, stellites and superalloys which are either difficult or nearly impossible to shape using conventional methods.

The key to the SSP of alloys lies in the unique microstructures of the feedstock materials in which the solid particles are spheroidal in shape as opposed to the typical dendritic microstructures of cast alloys.

Semi-solid metal (SSM) casting is a relatively new manufacturing route which offers an attractive near-net shape manufacturing route for precipitation hardenable aluminium alloy components, potentially giving them mechanical properties that are comparable to a wrought or machined equivalent product, but with the benefit of the rapid processing route of casting.

The key to the potential for high strength using the SSM casting technique is the as-cast microstructure that develops as a result of the production process. The SSM microstructure differs from the dendritic microstructure that is associated with traditional casting, in that it consists of a globular grain morphology that originates from the turbulent mixing that is a characteristic step forming part of the semisolid slurry production process.

The mechanisms involved during agitation in the slurry production step lead to the formation of globular solid particles within the melt. These particles continue to form and the slurry is transferred to the high pressure die casting facility when it reaches a solid fraction of approximately 50%. The mechanisms causing the globularization of the slurry have an effect on the nature of the final α-primary globular particles and, hence, affect the evolution of the as-cast structure during any post solidification heat treatments.

Figure 1: Semi-solid parts

기술 자료 검색

검색할 어구를 입력하십시오:

검색 범위



이 문서는 전체 문서 중 일부분입니다. 이 주제에 대해 더 읽고 싶으시면 아래 링크를 클릭하시면 됩니다.

Total Materia는 다양한 나라와 규격에 따른 수천개의 주조 재료에 대한 정보를 포함하고 있습니다.

재질의 화학적 조성, 기계적 특성, 물리적 특성, 고급 물성 데이터 등의 전체적인 특성 정보들을 어디서든 검토하실 수 있습니다.

고금 검색 내 규격 설명 기능을 이용하여, 규격 내 재질에 설명된 키워드를 통해 재질을 검색하실 수 있습니다.

검색 범위 좀 더 줄이기를 원하신다면 국가/규격과 같은 다른 조건을 지정할 수 있습니다.

검색 버튼을 클릭합니다.

선택된 정보에 부합하는 일련의 재질이 검색됩니다.

결과 리스트에서 재질을 선택하시면, 일련의 규격 사양 소그룹이 나타납니다.

여기에서 선택한 재질의 특정 특성 데이터를 검토하실 수도 있고, 강력한 상호 참조 표를 이용하여 유사 재질이나 등가 재질을 검토하는 것 또한 가능합니다.

예를 들어, 소그룹 내 화학적 조성 링크를 클릭하시면, 재질의 화학적 조성 데이터를 검토하실 수 있습니다.

Total Materia 데이터베이스를 사용해 보실 수 있는 기회가 있습니다. 저희는 Total Materia 무료 체험을 통해 150,000명 이상의 사용자가 이용하고 있는 커뮤니티로 귀하를 초대합니다.