深拉伸用钢:第一部分
非铁合金的热机械处理(TMT):第一部分
DataPLUS 模块提供上万种金属材料和非金属材料的腐蚀数据、焊接性能、尺寸与公差信息以及涂层信息。 点击这里了解更多。
Overview of Total Materia database 2022 年 1月 12日
Overview of Total Materia database 2022 年 1月 13日
在使用Total Materia几个月之后,以及深刻体验过所有潜在功能之后,我非常感谢你们的卓越工作和持续稳定的升级服务。 Total Materia始终是用来达成这一目的唯一工具。
M. Manfredini Bonfiglioli Industrial Gearmotors 博洛尼亚, 意大利
我们的目标很简单,就是让 Total Materia成为全球工程师在材料领域的首选一站式解决方案
Prof. Dr. Viktor Pocajt, CEOKey to Metals AG
Ceramic (ferrite) permanent magnetics have a range of characteristic properties. As well as displaying positive attributes in application, they also have several processing challenges associated with them. A preferred direction of magnetization results in both oriented (anisotropic) and non-oriented (isotropic) grades being available.
The raw material of Ceramic (ferrite) permanent magnets, iron oxide, is mixed with either strontium or barium and milled down to a fine powdered form. The powder is then mixed with a ceramic binder and magnets are produced through a compression or extrusion molding technique that is followed by a sintering process.
The nature of the manufacturing process results in a product that frequently contains imperfections such as cracks, porosity, chips, etc. Fortunately, these imperfections rarely interfere with a magnet's performance.
They are charcoal gray in color and usually appear in the forms of discs, rings, blocks, cylinders, and sometimes arcs for motors.
To enhance a ceramic magnet's performance, the ferrite compound may be biased by a magnetic field during the pressing process. This biasing induces a preferred direction of magnetization within the magnet, significantly reducing its performance in any other orientation.
Consequently, ceramic magnets are available in both oriented (anisotropic) and non-oriented (isotropic) grades. Because of its lower magnetic properties, the isotropic grade of ferrite, ceramic 1, is typically utilized where complex magnetization patterns are required, and in processes where biasing would be cost prohibitive.
Ceramic magnets are inherently brittle, and it is highly recommended that they are not utilized as structural elements in any application. Their thermal stability is the poorest of all the magnetic families, but they may be utilized in environments up to 300°C (570°F).
The dimensional repeatability as pressed components is difficult to control, consequently, components requiring tight tolerances necessitate secondary grinding operations to assure conformity.
Attributes of Ceramic Magnets
Applications of Ceramic Magnets
Speaker magnets, DC brushless motors, Magnetic Resonance Imaging (MRI), Magnetos used on lawnmowers and outboard motors, DC permanent magnet motors (used in cars), Separators (separate ferrous material from non-ferrous), Used in magnetic assemblies designed for lifting, holding, retrieving, and separating.
Date Published:
输入搜索词:
搜索项
全文 关键字
标题 摘要
本文属于一系列文章。点击下面的链接,你可以看到有关这个话题的更多文章。
Finding chemical composition data in the Total Materia database couldn’t be easier.
Within seconds it is possible for you to find useful chemical composition data for over 175,000 materials in the database.
Enter the material of interest into the quick search field. You can optionally narrow your search by specifying the country/standard of choice in the designated field and click Search.
Total Materia will generate the search list for you to select the material of interest from the material list. Click on the material of interest.
On the subgroup page, click the composition link to view chemical composition data for the selected material. The number of chemical composition data records is displayed in brackets next to the link.
The chemical composition data will be then be displayed along with all selected material information for your reference.
For you’re a chance to take a test drive of the Total Materia database, we invite you to join a community of over 150,000 registered users through the Total Materia Free Demo.