深拉伸用钢:第一部分
非铁合金的热机械处理(TMT):第一部分
DataPLUS 模块提供上万种金属材料和非金属材料的腐蚀数据、焊接性能、尺寸与公差信息以及涂层信息。 点击这里了解更多。
Overview of Total Materia database 2022 年 1月 12日
Overview of Total Materia database 2022 年 1月 13日
在使用Total Materia几个月之后,以及深刻体验过所有潜在功能之后,我非常感谢你们的卓越工作和持续稳定的升级服务。 Total Materia始终是用来达成这一目的唯一工具。
M. Manfredini Bonfiglioli Industrial Gearmotors 博洛尼亚, 意大利
我们的目标很简单,就是让 Total Materia成为全球工程师在材料领域的首选一站式解决方案
Prof. Dr. Viktor Pocajt, CEOKey to Metals AG
When bonding material through ultrasonic welding, the energy required comes in the form of mechanical vibrations.During ultrasonic metal welding, a complex process is triggered involving static forces, oscillating shearing forces and a moderate temperature increase in the welding area.
Joining and adhesion technology is an essential technology across multiple fields. Welding in the automotive, shipbuilding and architectural industries, and brazing in electronic components manufacturing are good representative examples. Miniaturization and increased weight saving, are a continuation in the recent trend in the manufacture of electric appliances and automobiles and, in these cases, the technology for joining dissimilar materials is absolutely indispensable.
Traditionally, when joining dissimilar materials, solid phase joining or adhesion and mechanical joining are used. Solid phase joining includes various methods, such as friction welding, explosion bonding , ultrasonic welding (Imai and Matsuoka, 2005), and diffusion bonding. For example, using these methods, it is possible to join aluminum and copper together.
Bonding materials of aluminum and copper can be useful, particularly when aiming to reduce weight and increase thermal and electrical conductivity. Therefore, the application of solid phase bonding methods have been examined for the welding of aluminum and copper. At present, a novel brazing technique (Timsit and Janeway, 1993) and a method using soldering of Zn–Al alloy are influential joining methods.
Of these methods, ultrasonic welding allows relatively easy joining in a short time and with a simple facility in practically, any environment such as in water and under vacuum. Additionally, it has the important advantage of direct joining of dissimilar materials such as Cu/Al without the requirement for flux.
Ultrasonic welding is a technological process to get permanent connections. Mostly it is used to weld non- ferrous metals like coppers for example. The technology of ultrasonic welding is used in various areas but mostly in electronics, electrics industry and automotive industry. When bonding material through ultrasonic welding, the energy required comes in the form of mechanical vibrations. The welding tool (sonotrode) couples to the part to be welded and moves it in a longitudinal direction with the part to be welded onto remaining static. The parts to be bonded are then simultaneously pressed together with the simultaneous action of static and dynamic forces causing a fusion of the parts without having to use additional materials (flux). This procedure is used on an industrial scale for joining metals (figure 1).
During ultrasonic metal welding, a complex process is triggered involving static forces, oscillating shearing forces and a moderate temperature increase in the welding area. The magnitude of these factors depends on the thickness of the workpieces, their surface structure, and their mechanical properties.
The workpieces are placed between a fixed machine part, i.e. the anvil, and the sonotrode, which oscillates horizontally during the welding process at high frequency (usually 20 or 35 or 40 kHz) (figure 1).
The most commonly used frequency of oscillation (working frequency) is 20 kHz. This frequency is above that audible to the human ear and also permits the best possible use of energy. For welding processes which require only a small amount of energy, a working frequency of 35 or 40 kHz may be used.
Date Published: Mar-2012
输入搜索词:
搜索项
全文 关键字
标题 摘要
本文属于一系列文章。点击下面的链接,你可以看到有关这个话题的更多文章。
The Total Materia database contains many thousands of materials suitable for welding applications across a large range of countries and standards.
Where available, full property information can be viewed for materials including chemical composition, mechanical properties, physical properties and carbon equivalent data as well as advice on welding application.
Using the Advanced Search page, define the search criteria by selecting ‘Welding filler materials’ in the Group of Materials pop-up list. It maybe that you need to further narrow the search criteria by using the other fields in the Advanced Search page e.g. Country/Standard.
Then click Submit.
A list of materials will then be generated for you to choose from.
After clicking a material from the resulting list, a list of subgroups derived from standard specifications appears.
From here it is possible to view specific property data for the selected material and also to view similar and equivalent materials in our powerful cross reference tables.
Click on the property data link of interest to you to view specific property data.
For you’re a chance to take a test drive of the Total Materia database, we invite you to join a community of over 150,000 registered users through the Total Materia Free Demo.