Hot Torsion Testing: Part Two


Hot torsion testing is specifically useful to assist in designing the all-important hot rolling schedules for steel.
The key areas of focus in this schedule are understanding the critical temperature phases at which recrystallization can be prevented and then the start and finish of the austenite transformation.

There are two main ways in which hot torsion testing can be used to help design the hot rolling schedules for steel:

  • the determination of the three critical temperatures of hot rolling, i.e. the temperature of non-recrystallization (Tnr), and the start and finish of the austenite transformation (Ar3 and Ar1, respectively);
  • the simulation of a specific (i.e.‘real’) industrial hot rolling schedule in order to assess the pass to pass evolution of the microstructure, culminating in generating the final, as-hot rolled structure.

In the many papers the microstructure evolution during hot torsion tests of stainless steels has been investigated.

Nelson reported the presence of well-developed dislocation cells in hot torsion 304L at 1100°C and considered it as evidence of the dynamic recovery (DRV) and possibly the continuous dynamic recrystallization (CDRX). On the other hand, Dehghan-Manshadi et al. investigated the effect of hot torsion processing variables such as strain, strain rate, and temperature on microstructure in 304 stainless steels under a wide range of deformation temperatures (900-1100°C) and strain rates (0.01-1s-1). They found that the dynamic recovery DDRX fraction increased with increasing shear strain.

Montheillet et al. also reported similar results. The objective of the J.Lu study was to investigate a relationship between processing variables and microstructure evolution in 304L stainless steel subjected to hot torsion. Orientation imaging microscopy (OIM) techniques were used to analyze the microstructure. Through the current study, an understanding of how processing variables correlate to microstructure evolution has been established.

2.2 Gleeble Hot Torsion Test

The Gleeble 3800 with Mobile Torsion Unit (MTU) was utilized in the study to conduct hot torsion tests of 304L stainless steel (Figure 1). In order to control the cooling rate, hot torsion samples modified by Norton, were machined and used in the current study.

Figure 1: Modified Gleeble hot torsion device

Three thermocouples are welded to the torsion sample on the sample’s fixed side at 0mm (0”), 6.35mm (0.25”), and 12.7mm (0.5”) from the shoulder of the gauge section. The thermocouple at 12.7mm (0.5”) location was used to control the heating and cooling rates. Hot torsion tests were carried out according to the schedule illustrated in Figure 2. Under a rough vacuum, samples were resistively heated to 1100°C and rotated to a given shear strain at a given shear strain rate. After torsion, the temperature of samples deceased to 200°C at the cooling rate of roughly 9°C/s by flowing Helium cooling through the samples.

Figure 2: Schematic diagrams of hot torsion

3.1 General Characteristics

OIM results of the base metal and representative samples subjected to hot torsion are shown in Figure 3 and Figure 4, respectively. The base metal microstructure (Figure 3) consisted of equiaxed grains with a high fraction of annealing twins, which results from static recrystallization and grain growth during heat treatment. Neither dislocation structures (DSs) nor low angle boundaries (LABs) were observed.

Figure 3: OIM grain map of the base metal, Red boundaries (DSs, 1-5° misorientation), Green boundaries (LABs, 5-15° misorientation), Black boundaries (grain boundaries, 15-180° misorientation), and White boundaries (twins)

The microstructure of samples subjected to hot torsion are shown in Figure 4. Compared with the base metal, CB (red boundaries, below 5° misorientation) and LAB (green boundaries, 5-15° misorientation) fractions in all samples increase. Additionally, very small grains were generated at grain boundaries or triple junctions, and bi-modal grain size distribution was observed in most samples (Figures 4a, b and d-l).

Figure 4: OIM grain map at the different shear strain rates and strains, a-c) shear strain rate: 0.02s-1 and strains: 0.5, 2 and 3, respectively; d-f) shear strain rate: 0.20s-1 and strains: 0.5, 2 and 3, respectively; g-i) shear strain rate:0.94s-1 and strains: 0.5, 2 and 3, respectively; j-l) shear strain rate: 4.70s-1 and strains: 0.5, 2 and 3, respectively; Red boundaries (DSs, 1-5° misorientation), Green boundaries (LABs, 5-15° misorientation), Black boundaries (grain boundaries, 15-180° misorientation), White boundaries (twins)

Pretražite bazu znanja

Unesite reč za pretragu:

Pretražite prema

Kompletan tekst
Ključne reči


U Total Materia bazi se nalazi više hiljada metalografskih snimaka poreklom iz različitih zemalja i standarda.

Korišćenjem kartice Metalografija u meniju možete izabrati materijal koji Vas zanima iz liste materijala koji sadrže metalografske podatke.

Metalografske podatke možete naći i kroz našu standardnu Brzu pretragu, a svi dostupni podaci biće prikazani listom podgrupa za odabrani materijal.

Jednostavno unesite oznaku materijala u polje Materijal, odaberite standard, ako je poznat, pa kliknite Pretražite.

solution img

Opšte informacije o mikrostukturi možete videti zajedno sa odgovarajućim hemijskim sastavom za odabrani materijal.

solution img

Za određene materijale postoje metalogafski snimci pri različitim uvećanjima.

Možete odabrati druga stanja iz padajućeg menija Izaberite stanje da biste videli metalografske snimke iz drugih procesa i pri različitim vidovima termičke obrade.

solution img

solution img

Imate priliku da isprobate Total Materia bazu podataka. Pozivamo Vas da se pridružite zajednici od preko 150,000 registrovanih korisnika kroz Total Materia Besplatan demo.