True Stress - True Strain Curve: Part Three

Sažetak:

The parameters that are usually determined from the true stress - true strain curve include true stress at maximum load, true fracture stress, true fracture strain, true uniform strain, true local necking strain, strain-hardening exponent and strength coefficient.

True Stress at Maximum Load


The true stress at maximum load corresponds to the true tensile strength. For most materials necking begins at maximum load at a value of strain where the true stress equals the slope of the flow curve. Let su and eu denote the true stress and true strain at maximum load when the cross-sectional area of the specimen is Au. The ultimate tensile strength is given by

Eliminating Pmax yields

(1)


True Fracture Stress


The true fracture stress is the load at fracture divided by the cross-sectional area at fracture. This stress should be corrected for the, triaxial state of stress existing in the tensile specimen at fracture. Since the data required for this correction are often not available, true-fracture-stress values are frequently in error.

True Fracture Strain


The true fracture strain ef is the true strain based on the original area A0 and the area after fracture Af

(2)

This parameter represents the maximum true strain that the material can withstand before fracture and is analogous to the total strain to fracture of the engineering stress-strain curve. Since Eq. (3) is not valid beyond the onset of necking, it is not possible to calculate ef from measured values of ef. However, for cylindrical tensile specimens the reduction of area q is related to the true fracture strain by the relationship

(3)


True Uniform Strain


The true uniform strain eu is the true strain based only on the strain up to maximum load. It may be calculated from either the specimen cross-sectional area Au or the gage length Lu at maximum load.

Equation (3) may be used to convert conventional uniform strain to true uniform strain. The uniform strain is often useful in estimating the formability of metals from the results of a tension test.

(4)


True Local Necking Strain


The local necking strain en is the strain required to deform the specimen from maximum load to fracture.

(5)

Pretražite bazu znanja

Unesite reč za pretragu:

Pretražite prema

Kompletan tekst
Ključne reči

Naslovi
Sažetak

Ovaj članak pripada seriji članaka. Da biste pročitali više o ovoj temi, kliknite na linkove ispod.

U Total Materia Extended Range obuhvata jedinstvenu kolekciju dijagrama napon-deformacija za nekoliko hiljada materijala, različite vrste termičke obrade i radne temperature. U bazi postoje stvarne i inženjerske krive napon-deformacija za različite vrednosti brzine deformacije.

Pretraga dijagrama napon-deformacija oduzima samo nekoliko sekundi.

Unesite materijal u odgovarajuće polje Brze pretrage. Pretragu možete suziti odabirom zemlje/standarda, a nakon toga kliknite na Pretražite.

solution img

Kada odaberete materijal koji Vas interesuje, kliknite na link Dijagrami napon-deformacija da biste videli podatke za odabrani materijal. Broj zapisa o dijagramima napon-deformacija se prikazuje u zagradama pored linka.

solution img

Pošto su Total Materia krive napon-deformacija neutralni u odnosu na specifikacije standarda, možete ih pregledati klikom na odgovarajući link u bilo kojoj podgrupi.

Pored krivih napon-deformacija na različitim temperaturama, tačke sa dijagrama su date u formi tabele radi lakšeg kopiranja u, na primer, CAE softver.

solution img

Moguće je, takođe, videti dijagrame napon-deformacija na drugim radnim temperaturama.

Da biste ovo uradili, jednostavno unesite novu temperaturu u polje Unesite temperaturu.

Nakon što kliknete na dugme Izračunaj, nova kriva će biti iscrtana, a tačke koje odgovaraju definisanoj temperaturi biće prikazane u tabeli pored. Vidite primer ispod, za temperaturu 250°C.

solution img

Imate priliku da isprobate Total Materia bazu podataka. Pozivamo Vas da se pridružite zajednici od preko 150,000 registrovanih korisnika kroz Total Materia Besplatni demo.