Classification of Cast Iron

요약:

The term cast iron, like the term steel, identifies a large family of ferrous alloys. Cast irons are multicomponent ferrous alloys. They contain major (iron, carbon, silicon), minor (<0.01%), and often alloying (>0.01%) elements. Cast iron has higher carbon and silicon contents than steel. Because of the higher carbon content, the structure of cast iron, as opposed to that of steel, exhibits a rich carbon phase. Depending primarily in composition, cooling rate and melt treatment, cast iron can solidify according to the thermodynamically metastable Fe-Fe3C system or the stable Fe-Gr system.

The term cast iron, like the term steel, identifies a large family of ferrous alloys. Cast irons are multicomponent ferrous alloys. They contain major (iron, carbon, silicon), minor (<0.01%), and often alloying (>0.01%) elements.

Cast iron has higher carbon and silicon contents than steel. Because of the higher carbon content, the structure of cast iron, as opposed to that of steel, exhibits a rich carbon phase. Depending primarily on composition, cooling rate and melt treatment, cast iron can solidify according to the thermodynamically metastable Fe-Fe3C system or the stable Fe-Gr system.

When the metastable path is followed, the rich carbon phase in the eutectic is the iron carbide; when the stable solidification path is followed, the rich carbon phase is graphite. Referring only to the binary Fe-Fe3C or Fe-Gr system, cast iron can be defined as an iron-carbon alloy with more than 2% C. Important notice is that silicon and other alloying elements may considerably change the maximum solubility of carbon in austenite (g). Therefore, in exceptional cases, alloys with less than 2% C can solidify with a eutectic structure and therefore still belong to the family of cast iron.

The formation of stable or metastable eutectic is a function of many factors including the nucleation potential of the liquid, chemical composition, and cooling rate. The first two factors determine the graphitization potential of the iron. A high graphitization potential will result in irons with graphite as the rich carbon phase, while a low graphitization potential will result in irons with iron carbide.

The two basic types of eutectics - the stable austenite-graphite or the metastable austenite-iron carbide (Fe3C) - have wide differences in their mechanical properties, such as strength, hardness, toughness, and ductility. Therefore, the basic scope of the metallurgical processing of cast iron is to manipulate the type, amount, and morphology of the eutectic in order to achieve the desired mechanical properties.

Classification

Historically, the first classification of cast iron was based on its fracture. Two types of iron were initially recognised:

  • White iron: Exhibits a white, crystalline fracture surface because fracture occurs along the iron carbide plates; it is the result of metastable solidification (Fe3C eutectic)
  • Gray iron: Exhibits a gray fracture surface because fracture occurs along the graphite plates (flakes); it is the result of stable solidification (Gr eutectic).

With the advent of metallography, and as the body of knowledge pertinent to cast iron increased, other classifications based on microstructural features became possible:

  • Graphite shape: Lamellar (flake) graphite (FG), spheroidal (nodular) graphite (SG), compacted (vermicular) graphite (CG), and temper graphite (TG); temper graphite results from ? solid-state reaction (malleabilization.)
  • Matrix: Ferritic, pearlitic, austenitic, martensitic, bainitic (austempered).

This classification is seldom used by the floor foundryman. The most widely used terminology is the commercial one. A first division can be made in two categories:

  • Common cast irons: For general-purpose applications, they are unalloyed or low alloyed
  • Special cast irons: For special applications, generally high alloyed.

The correspondence between commercial and microstructural classification, as well as the final processing stage in obtaining common cast irons, is given in Fig. 2.

Special cast irons differ from the common cast irons mainly in the higher content of alloying elements (>3%), which promote microstructures having special properties for elevated-temperature applications, corrosion resistance, and wear resistance. A classification of the main types of special cast irons is shown in Fig. 1.

Fig. 1. Classification of special high - alloy cast iron

Fig.2. Basic microstructures and processing for obtaining common commercial cast irons

기술 자료 검색

검색할 어구를 입력하십시오:

검색 범위

본문
키워드

머릿글
요약

Total Materia는 다양한 나라와 규격에 따른 수천개의 철 재질에 대한 정보를 포함하고 있습니다.

재질의 화학적 조성, 기계적 특성, 물리적 특성, 고급 물성 데이터 등의 전체적인 특성 정보들을 어디서든 검토하실 수 있습니다.

고급 검색을 이용하여, 검색 조건의 재질 리스트에서 '철'을 선택합니다. 검색 범위 좀 더 줄이기를 원하신다면 국가/규격과 같은 다른 조건을 지정할 수 있습니다.

검색 버튼을 클릭합니다.


선택된 정보에 부합하는 일련의 재질이 검색됩니다.


결과 리스트에서 재질을 선택하시면, 일련의 규격 사양 소그룹이 나타납니다.

여기에서 선택한 재질의 특정 특성 데이터를 검토하실 수도 있고, 강력한 상호 참조 표를 이용하여 유사 재질이나 등가 재질을 검토하는 것 또한 가능합니다.


자세한 특성 데이터를 보시려면 특성 데이터 링크를 클릭하세요.


Total Materia 데이터베이스를 사용해 보실 수 있는 기회가 있습니다. 저희는 Total Materia 무료 체험을 통해 150,000명 이상의 사용자가 이용하고 있는 커뮤니티로 귀하를 초대합니다.