Optimizing Refining Process (LD-ORP): Part One

요약:

From the 1980’s it has been generally recognized that there has been an overall drop in the quality of raw materials in the steel making industry.
Coupled with a drive from technology to provide consistently cleaner steels means that producers have had to work on optimizing processes to meet demands.

Since the 1980s it can be observed that the quality of raw materials and fuels used for iron and steel making has become continuously worse. As a result this global trend has led to a deteriorating hot metal quality in terms of higher contents of impurities. At the same time steelmakers have been faced with increasing requests to produce clean steel with low and ultra-low content of sulphur and phosphorous in particular. Decreasing availability of premium high quality raw materials and fuels with low contents of unwanted and harmful elements and onwardly increased pressure to lower production cost by purchasing cheap raw materials have led to this doom loop.

In the past, generally the Western steelmakers responded to this challenge by optimizing their facilities, improving the degree of automation, introducing bottom stirring in BOF converters, and to say by squeezing the productivity of their aggregates to ever new records. But these efforts have come to an end and further progress can be only attained with alternative concepts.

A modern steelworks consists of a series of process steps where crude iron is gradually refined to steel of a certain quality and casted in a continuous manner into large pieces, e.g. rectangular slabs, which are treated further in the rolling mill. The crude iron is produced in the blast furnace by reduction of iron ore.

The huge slag generation due to blowing oxygen in the torpedo ladle during dephosphorization and a highly restricted scrap usage ratio, led Nippon Steel’s Nagoya works to modify their BOF converter into a HM pretreatment converter for De-Si, De-P, and DeS. After tapping and separation of the slag the hot metal is then charged to another converter where DeC is executed. Figure 1 shows the flow diagram of this process, which was named “LD-ORP (LD – Optimized Refining Process)”.

In Japan, at Nagoya Works the LD-optimized refining process (LD-ORP) was developed, and began to use it commercially. The process consisted of charging of hot metal into a converter designated exclusively for dephosphorization; removal of Si and P by blowing mainly oxygen gas, taking advantage of the large free board that torpedo ladle cars lacked; removal of S by bottom blowing of flux; deslagging; and transfer to a common converter for decarburization (Figure 1)). Despite the trouble of the transfer from one converter to another, the process has been applied to increasing amount of hot metal in appreciation of low CaO consumption, high yield, and stable and high-speed operation of converters, and it was aimed to be applied to all hot metal.



Figure 1: Converter type hot metal dephosphorization processes

As stated above, hot-metal pretreatment methods taking advantage of converters showed rapid advances since the 1990s, and as a result, the shares of the LD-ORP and MURC processes in hot-metal dephosphorization increased, replacing conventional processes using torpedo ladle cars or hot-metal ladles, as seen in Figure 2. As of the beginning of 2012, the converter dephosphorization methods are responsible for about 95% of the hot-metal dephosphorization of the company; our plan is to make the Figure reach 100% in 2013.



Figure 2: Shares of different methods of hot-metal dephosphorization

기술 자료 검색

검색할 어구를 입력하십시오:

검색 범위

본문
키워드

머릿글
요약

물리적 특성은 Total Materia 데이터베이스 내 많은 재질에서 검토하실 수 있습니다.

데이터는 규격의 공식 정보와 Total Materia의 강력한 상호 참조 표를 통해 검색 가능하며 이는 물리적 특성 데이터 검색에 매우 효과적일 것입니다!

신속 검색에 검색할 재질명을 입력합니다. 원하신다면 국가/규격을 지정하신 후 검색 버튼을 클릭합니다.


관심 있는 재질을 선택하신 후, 물리적 특성 링크를 클릭하셔서 선택된 재질의 데이터를 검토합니다. 물리적 특성 데이터 기록의 개수는 링크 옆에 괄호 안에 표시됩니다.


물리적 특성은 원래 데이터 값에 따라 표시됩니다. 규격에 의한 공식 데이터는 공식 탭에서 찾을 수 있고, 다른 출처를 통해 검색된 재질의 데이터는 자신의 탭에 표시 됩니다.


유사 재질 탭에는 원래 재질과 비슷하며 물리적 특성이 포함된 재질을 표시합니다. 등가 재질 검색 시에 매우 유용할 수 있습니다!


일반 탭은 특성 데이터에 대한 일반적인 개요를 제공하며 추가 조사를 위한 유용한 출발점으로 사용될 수 있습니다.


Total Materia 데이터베이스를 사용해 보실 수 있는 기회가 있습니다. 저희는 Total Materia 무료 체험을 통해 150,000명 이상의 사용자가 이용하고 있는 커뮤니티로 귀하를 초대합니다.