Fracture Mechanics

요약:

Fracture mechanics approaches require that an initial crack size be known or assumed. For components with imperfections or defects (such as welding porosities, inclusions and casting defects, etc.) an initial crack size may be known. Alternatively, for an estimate of the total fatigue life of a defect-free material, fracture mechanics approaches can be used to determine propagation. Strain-life approaches may then be used to determine initiation life, with the total life being the sum of these two estimates.

Unexpected failure of buildings, bridges, weapons, ships, trains, airplanes, and various machines has occurred throughout the industrial world. A number of these failures have been due to poor design. However, it has been discovered that many failures have been caused by preexisting flaws in materials that initiate crack that grow and lead to fracture. This discovery has, in a sense, lead to the field of study known as fracture mechanics.

The field of fracture mechanics is extremely broad. It includes applications in engineering, studies in applied mechanics (including elasticity and plasticity), and materials science (including fracture processes, fracture criteria, and crack propagation). A successful application of fracture mechanics requires some understanding of the whole field.

The fatigue life of a component is made up of initiation and propagation stages. This is illustrated schematically in Fig. 1

Figure 1. Initiation and propagation portions of fatigue life


The size of the crack at the transition from initiation to propagation is usually unknown and often depends on the point of view of the analyst and the size of the component being analyzed. For example, for a researcher equipped with microscopic equipment it may be on the order of a crystal imperfection, dislocation,or a 0,1 mm-crack, while to the inspector in the field it may be the smallest crack that is readily detectable with nondestructive inspection equipment.

Nevertheless, the distinction between the initiation life and propagation life is important. At low strain amplitudes up to 90% of the life may be taken up with initiation, while at high amplitudes the majority of the fatigue life may be spent propagating a crack. Fracture mechanics approaches are used to estimate the propagation life.

Fracture mechanics approaches require that an initial crack size be known or assumed. For components with imperfections or defects such as welding porosities, inclusions and casting defects, etc. an initial crack size may be known.

Alternatively, for an estimate of the total fatigue life of a defect-free material, fracture mechanics approaches can be used to determine propagation. Strain-life approaches may then be used to determine initiation life, with the total life being the sum of these two estimates.

기술 자료 검색

검색할 어구를 입력하십시오:

검색 범위

본문
키워드

머릿글
요약

Total Materia Extended Range는 수천개 금속 합금의 열처리 조건 및 하중 조건에 대한 파괴 공학 변수 데이터베이스를 포함하고 있습니다. K1C, KC, 균열 성장 및 Paris 법칙 변수와 이에 대응되는 균열 성장 그래프가 제공됩니다.

단조 특성도 참조를 위해 추가되어 있으며 단조 특성을 통해 예상되는 빠진 변수의 추정치도 필요한 곳에는 포함되어 있습니다.

신속 검색에 검색할 재질명을 입력합니다. 원하신다면 국가/규격을 지정하신 후 검색 버튼을 클릭합니다.


결과 리스트에서 재질을 선택하시면, 일련의 규격 사양 소그룹이 나타납니다.


Total Materia 파괴 공학 데이터는 규격 사양서와 무관하므로, 어떠한 소그룹 내의 링크를 클릭하셔도 파괴 공학 데이터를 검토하실 수 있습니다.

데이터는 표로 출력되며, 가능한 곳에는 Paris 곡선(Region II)와 함께 출력되어 있습니다. 데이터 출처에 관한 정확한 참조가 각 데이터에 주어져 있습니다.


Total Materia 데이터베이스를 사용해 보실 수 있는 기회가 있습니다. 저희는 Total Materia 무료 체험을 통해 150,000명 이상의 사용자가 이용하고 있는 커뮤니티로 귀하를 초대합니다.