세계 제일의 방대한 재료 데이터베이스

# Creep Life Prediction

요약:

Creep life prediction is of paramount importance in selecting the right material for certain engineering applications and in the most extreme cases can prevent component failure leading to catastrophic effects.
Such implications mean that there has been an important development to assist in predicting creep life for example, the Strain-Acceleration-Parameter (SAP), which connects creep curves directly to the minimum creep rate.

An increasingly large number of engineering applications requires the choice of materials and design of components to be based, wholly or partially, on creep damage. The creep of materials is a significant engineering topic in many modern industries including power generation plants, chemical plants and the aerospace industry. The practical parameter of major importance is the prediction of the creep life of components subjected to elevated temperatures. Failure of these components may have catastrophic effects. Therefore, the development of methods for predicting the life of components operating within the creep regime has been an active research endeavor.

In the work of H. Sato and T. Miyno a method of creep life prediction by means of Strain-Acceleration-Parameter (SAP), α, is presented. The advantage of the proposed method is that the required parameters evaluated from individual creep curves are directly connected with the minimum creep rate.

It is widely accepted that creep behaviors are mainly evaluated by minimum or steady state creep rate. The important parameters are its stress dependence, grain size dependence and temperature dependence, and are characterized by the stress exponent, n, the grain size exponent, p, and the activation energy of creep, Qc. One of the general forms of equations that describe steady-state or minimum strain rates is the equation proposed by Mukherjee, et al.:

... (1)

Here, A, D0, G, b, k and R are a constant, pre-exponential term of diffusion coefficient, shear modulus, the magnitude of Burgers vector, the Boltzmann's constant and the gas constant, respectively. The values T and σ are the absolute temperature and the applied stress which determine the creep conditions, and d is the grain size. The minimum creep rates are treated as the most important parameter describing creep behavior. The minimum creep rates, however, are evaluated from just a part of the creep curve, and the same minimum creep rates would be observed from creep curves whose shapes are different to each other.

For more precise determination and description of creep behavior, not only the minimum creep rates, but also the shape of creep curves should be considered.

The authors propose a characteristic value, Strain-Acceleration-Parameter (SAP), α, that reflects shape of creep curves and reflects acceleration of strain rate in secondary creep [6-7]:

... (2)

α corresponds to the curvature of the common logarithm of strain rate as a function of strain. The value is defined at a strain of minimum creep rate, εmin, and at a time of minimum creep rate, tmin.

Because it is the second order differential of strain, the values evaluated by means of simple finite differential vary and spread depending on the precision of calculation. To avoid this difficulty, authors applied least square spline interpolation for calculation of strain rate and related derivatives.

As the Strain-Acceleration-Parameter, α, is defined as a curvature of the common logarithm of strain rate as a function of strain, the creep curve can be extrapolated and reconstructed with suitable initial conditions. As α, is defined at minimum creep rate, and conditions at minimum creep rate, i.e., strain and strain-rate are known, the common logarithm of strain rate, log, as a function of strain, ε, can be described as equation (3).

... (3)

Here, min εmin and min min are evaluated experimentally from individual creep curves. Equation (3) can be solved numerically giving the creep curve, ε(t). Required values to reconstruct the whole creep curve are the SAP α, the minimum strain rate min min, the strain at minimum creep rate min εmin, and the time at minimum creep rate tmin. Three of these required four parameters directly correlate with a condition at the minimum creep rate.

## 기술 자료 검색

검색할 어구를 입력하십시오:

 검색 범위 본문 키워드 머릿글 요약

Total Materia Extended Range는 수천개 금속 합금의 열처리 및 하중 조건에 대한 크리프 데이터 데이터베이스를 포함하고 있습니다.

다양한 온도에서의 항복 응력 및 크리프 파단 강도가 라슨-밀러 변수, 부품의 잔류 수명과 함께 출력되어 있습니다.

신속 검색에 검색할 재질명을 입력합니다. 원하신다면 국가/규격을 지정하신 후 검색 버튼을 클릭합니다.

결과 리스트에서 재질을 선택하시면, 일련의 규격 사양 소그룹이 나타납니다.

Total Materia 크리프 특성은 규격 사양서와 무관하므로, 어떠한 소그룹 내의 링크를 클릭하셔도 크리프 데이터를 검토하실 수 있습니다.

항복 응력 및 크리프 파단 강도는 표로 주어져 있습니다.

원하는 온도나 응력 값을 입력하시면, 그 조건에 부합하는 이론적인 라슨-밀러 변수가 생성됩니다.

간단히 원하시는 상태를 선택하신 후 계산 버튼을 클릭하세요.

Total Materia 데이터베이스를 사용해 보실 수 있는 기회가 있습니다. 저희는 Total Materia 무료 체험을 통해 150,000명 이상의 사용자가 이용하고 있는 커뮤니티로 귀하를 초대합니다.