High-Temperature Corrosion: Part Two

요약:

Vapor species that form in any given high-temperature corrosion situation often have a strong influence on the rate of attack, the rate generally being accelerated when volatile corrosion products form.
Although most metals and alloys form a layer of oxide in contact with air, the differences in oxide growth rate can be significant.

Vapor species that form in any given high-temperature corrosion situation often have a strong influence on the rate of attack, the rate generally being accelerated when volatile corrosion products form. Gulbransen and Jansson have shown that metal and volatile oxide species are important in the kinetics of high-temperature oxidation of carbon, silicon, molybdenum, and chromium.

Six types of oxidation phenomena were identified:

1. At low temperature, diffusion of oxygen and metal species through a compact oxide film
2. At moderate and high temperatures, a combination of oxide film formation and oxide volatility
3. At moderate and high temperatures, the formation of volatile metal and oxide species at the metal-oxide interface and transport through the oxide lattice and mechanically formed cracks in the oxide layer
4. At moderate and high temperatures, the direct formation of volatile oxide gases
5. At high temperature, the gaseous diffusion of oxygen through a barrier layer of volatilized oxides
6. At high temperature, spalling of metal and oxide particles.

Corrosion kinetics

Although most metals and alloys form a layer of oxide in contact with air, the differences in oxide growth rate can be significant. For engineering purposes the differences are vital since they determine the component life-time. A linear growth rate implies that the rate of oxidation remains constant during exposure. Linear oxidation rates can be observed during the initial exposure, before a continuous oxide film has formed. A similar behaviour is also seen when a bare metal surface is revealed due to severe oxide spallation.

According to the linear rate equation described in Equation 6, the exposure time does not affect the oxidation rate and it is reactions at the surface or phase boundary that limit the oxidation rate.

... (6)

Where x represents the oxide thickness, K1 the linear rate constant, t denotes time and C is a constant.

During exposure of metals and alloys suitable for use at high temperatures, the transport of reactants across the oxide scale is usually the rate-determining step and the oxidation rate decreases as the oxide thickens. In a model developed by Wagner the diffusion of ions and electrons are limiting the oxidation rate, leading to a parabolic growth rate as shown in Equation 7.

... (7)

Where x represents the oxide thickness, KP the parabolic rate constant, t denotes time and C is a constant.

Plots showing oxide growth rates are commonly used when assessing alloy performance during exposure in high temperature atmospheres. With a double logarithmic plot the constants of the rate equation can be easily determined. In reality this often results in a growth rate that deviates from the existing models. The obvious reason is that these are idealized models that cannot perfectly describe oxide growth on engineering alloys when several factors are simultaneously influencing the oxidation process.

The presence of fast diffusion paths at localized positions (grain boundaries, lattice defects etc.) both within the oxide and in the metal virtually means that the scale growth rate varies over the surface. Localized spallation may also occur which governs a rapid oxide growth at the position where the oxide film has ‘spalled off’. Despite discrepancies from the described growth models, a diffusion controlled oxidation is desired and commonly observed for engineering alloys. Severe cracking or spallation of the oxide film is also an important feature which results in a rapid increase in corrosion rate.

기술 자료 검색

검색할 어구를 입력하십시오:

검색 범위

본문
키워드

머릿글
요약

이 문서는 전체 문서 중 일부분입니다. 이 주제에 대해 더 읽고 싶으시면 아래 링크를 클릭하시면 됩니다.

Total Materia는 내부식용으로 적합한 다양한 국가와 규격 내 수천개의 재질에 대한 정보를 포함하고 있습니다.

재질의 화학적 조성, 기계적 특성, 물리적 특성, 고급 물성 데이터 등의 전체적인 특성 정보들을 어디서든 검토하실 수 있습니다.

고금 검색 내 규격 설명 기능을 이용하여, 규격 내 재질에 설명된 키워드를 통해 재질을 검색하실 수 있습니다.

검색 범위 좀 더 줄이기를 원하신다면 국가/규격과 같은 다른 조건을 지정할 수 있습니다.

검색 버튼을 클릭합니다.


선택된 정보에 부합하는 일련의 재질이 검색됩니다.


결과 리스트에서 재질을 선택하시면, 일련의 규격 사양 소그룹이 나타납니다.

여기에서 선택한 재질의 특정 특성 데이터를 검토하실 수도 있고, 강력한 상호 참조 표를 이용하여 유사 재질이나 등가 재질을 검토하는 것 또한 가능합니다.


예를 들어, 소그룹 내 화학적 조성 링크를 클릭하시면, 재질의 화학적 조성 데이터를 검토하실 수 있습니다.


Total Materia 데이터베이스를 사용해 보실 수 있는 기회가 있습니다. 저희는 Total Materia 무료 체험을 통해 150,000명 이상의 사용자가 이용하고 있는 커뮤니티로 귀하를 초대합니다.