Application of Microalloyed HSLA Steel: Part Two

요약:

For many steel grades microalloying with niobium is the key to achieve their characteristic property profile.
Microalloyed HSLA steels were among the first high strength steel grades used in vehicle construction. In some recent passenger cars they account for up to 40% of the body mass.

Modern vehicle bodies make intensive use of high strength steel grades to meet the contradicting demand of lighter weight and simultaneously better mechanical performance.

For many steel grades microalloying with niobium is the key to achieve their characteristic property profile. In HSLA steels, niobium enhances the strength primarily by grain refinement. In interstitial free high strength steels niobium serves as a stabilizing element. Some modern multiphase steels rely on niobium to achieve additional strength via grain refinement and precipitation hardening.

Microstructural control constitutes a powerful means to further optimize properties relevant to automotive processing such as cutting and forming. The microalloying characteristics of niobium will now be further considered.

Microalloyed HSLA steels were among the first high strength steel grades used in vehicle construction. In some recent passenger cars they account for up to 40% of the body mass. A high yield ratio and thus a low work hardening potential is characteristic of these steel grades.

This can be advantageous in achieving the specified minimum yield strength in the component, as the local yield strength is rather insensitive to the level of deformation induced during forming. Other characteristics of HSLA steel are the quasi-isotropy (Δr-value ~ 0) and a good fatigue resistance.

HSLA steel is typically used for the manufacturing of parts with low and medium geometric complexity such as members, reinforcement structures and chassis components. The low alloying content and the limited carbon content in particular reduces the hardness in the heat affected zone after welding processes with a fast cooling speed.

HSLA steel is available as hot-rolled and cold rolled material. Cold rolled sheet can be produced by batch and continuous annealing in most of the existing cold rolling mills. As a result, there is a broad availability of this material including a wide range of dimensions and surface treatments.

The production of HSLA steel relies on niobium microalloying in combination with thermomechanical rolling in the hot rolling mill. This treatment provides grain refinement and a homogenous microstructure. Particularly the refinement of cementite particles is beneficial to improve the forming behavior. The desired strength level is adjusted by the Nb content (0.02-0.05%)

Additionally, the content of solid solution strengtheners like Mn and Si, Niobium is by far the most effective element for increasing the recrystallization stop temperature. A typical finishing temperature is about 875°C and the coiling temperature is around 600°C for all Nb-alloyed grades in order to optimize precipitation hardening.

The microalloying of cold-rolled grades utilize maximum precipitation hardening in the hot-rolling mill. To achieve a yield stress of more than 400 MPa, additional microalloying of Ti is usually applied (Figure 5). The target for the heat treatment is to recrystallize the brittle cold-rolled microstructure without enlarging the precipitations. For a given chemical composition, hot-rolled material always has a higher strength value when compared to cold-rolled material (Figure 5).



Figure 5: Strength increase of mild steel by Nb and Ti microalloying

A recent approach to produce microalloyed hot rolled strip of 500 MPa minimum yield strength was successfully put into practice by reducing the carbon content (0.0459 and increasing niobium content (0.09%). Besides an extremely fine grained ferritic-bainitic microstructure, very low scattering in the mechanical properties within the coil and across batches was obtained (Figure 4). Particularly the narrow scattering of the yield strength is helpful to avoid spring back.

The sheet edges are particularly smooth after mechanical cutting operations due to the ferritic-bainitic structure. Furthermore, the rather low carbon content also results in a reduced edge hardening when laser cutting is employed. Accordingly, this steel is well suited for forming methods where high peripheral stress is induced to sheet edge.





Figure 6: Property scattering of a 500 MPa min yield strength hot-rolled steel with low C-high Nb concept

기술 자료 검색

검색할 어구를 입력하십시오:

검색 범위

본문
키워드

머릿글
요약

이 문서는 전체 문서 중 일부분입니다. 이 주제에 대해 더 읽고 싶으시면 아래 링크를 클릭하시면 됩니다.

Total Materia는 다양한 나라와 규격에 따른 수천개의 구조용 철강 재질에 대한 정보를 포함하고 있습니다.

재질의 화학적 조성, 기계적 특성, 물리적 특성, 고급 물성 데이터 등의 전체적인 특성 정보들을 어디서든 검토하실 수 있습니다.

고급 검색 내 전 텍스트 검색을 이용하여, 다목적 용 재질을 검색하는 것이 가능합니다.

검색 범위 좀 더 줄이기를 원하신다면 국가/규격과 같은 다른 조건을 지정할 수 있습니다.

검색 버튼을 클릭합니다.


선택된 정보에 부합하는 일련의 재질이 검색됩니다.


결과 리스트에서 재질을 선택하시면, 일련의 규격 사양 소그룹이 나타납니다.


여기에서 선택한 재질의 특정 특성 데이터를 검토하실 수도 있고, 강력한 상호 참조 표를 이용하여 유사 재질이나 등가 재질을 검토하는 것 또한 가능합니다.

예를 들어, 소그룹 내 화학적 조성 링크를 클릭하시면, 재질의 화학적 조성 데이터를 검토하실 수 있습니다.


구조용 철강에 중요한 정보를 제공하는 기계적 특성(항복 응력, 인장 응력, 연신율 및 충격 데이터) 또한 검토 하실 수 있습니다.


Total Materia 데이터베이스를 사용해 보실 수 있는 기회가 있습니다. 저희는 Total Materia 무료 체험을 통해 150,000명 이상의 사용자가 이용하고 있는 커뮤니티로 귀하를 초대합니다.