Fatigue Properties: Part Two

요약:

A fatigue fracture will have two distinct regions; One being smooth or burnished as a result of the rubbing of the bottom and top of the crack. The second is granular, due to the rapid failure of the material.

Striations are thought to be steps in crack propagation, were the distance depends on the stress range. Beachmarks on the other hand may contain thousands of striations.

One can determine that a material failed by fatigue by examining the fracture sight. A fatigue fracture will have two distinct regions; One being smooth or burnished as a result of the rubbing of the bottom and top of the crack (steps 1 & 2); The second is granular, due to the rapid failure of the material.

Other features of a fatigue fracture are Beachmarks and Striations. Beachmarks, or clamshell marks, may be seen in fatigue failures of materials that are used for over a period of time, allowed to rest for an equivalent time period and then loaded again as in factory usage. Striations are thought to be steps in crack propagation, were the distance depends on the stress range. Beachmarks on the other hand may contain thousands of striations.

A very useful way to visualize time to failure for a specific material is with the S-N curve. The "S-N" means stress verse cycles to failure, which when plotted uses the stress amplitude, σa plotted on the vertical axis and the logarithm of the number of cycles to failure. An important characteristic of this model as seen in Figure 3 is the fatigue limit.



Figure 3: A S-N Plot for an aluminum alloy

The significance of the fatigue limit is that if the material is loaded below this stress, then it will not fail, regardless of the number of times it is loaded. Material such as aluminum, copper and magnesium do not show a fatigue limit, therefore they will fail at any stress and at any number of cycles. Other important terms are fatigue strength and fatigue life. The stress at which failure occurs for a given number of cycles is the fatigue strength. The number of cycles required for a material to fail at a certain stress in fatigue life.

The rate of fatigue crack propagation is determined by subjecting fatigue-cracked specimens, like the compact specimen used in fracture toughness testing, to a constant-amplitude and cyclic loading. The incremental increase in crack length is recorded along with the corresponding number of elapsed load cycles to acquire the stress intensity (K), crack length (a), and cycle count (N) data during the test. The data is presented in an “a versus N” curve as shown in the image to the right. Various a versus N curves can be generated by varying the magnitude of the cyclic loading and/or the size of the initial crack.

Dependable design against fatigue-failure requires thorough education and supervised experience in structural engineering, mechanical engineering, or materials science. There are three principal approaches to life assurance for mechanical parts that display increasing degrees of sophistication:

  • Design to keep stress below threshold of fatigue limit (infinite lifetime concept);
  • Design (conservatively) for a fixed life after which the user is instructed to replace the part with a new one (a so-called lifed part, finite lifetime concept, or "safe-life" design practice);
  • Instruct the user to inspect the part periodically for cracks and to replace the part once a crack exceeds a critical length. This approach usually uses the technologies of nondestructive testing and requires an accurate prediction of the rate of crack-growth between inspections. This is often referred to as damage tolerant design or "retirement-for-cause".

Fatigue cracks that have begun to propagate can sometimes be stopped by drilling holes, called drill stops, in the path of the fatigue crack. This is not recommended as a general practice because the hole represents a stress concentration factor which depends on the size of the hole and geometry. There is thus the possibility of a new crack starting in the side of the hole. It is therefore always far better to replace the cracked part entirely.

기술 자료 검색

검색할 어구를 입력하십시오:

검색 범위

본문
키워드

머릿글
요약

이 문서는 전체 문서 중 일부분입니다. 이 주제에 대해 더 읽고 싶으시면 아래 링크를 클릭하시면 됩니다.

Total Materia Extended Range는 수천개 금속 합금의 열처리 및 하중 조건에 대한 금속 피로 및 주기 특성 데이터베이스를 포함하고 있습니다. 응력 수명 및 변형률 수명 변수 및 단조 특성 정보와, 통계적 변수와 추정치도 필요한 곳에는 추가되어 있습니다.

데이터베이스에서 주기 특성을 매우 쉽고 빠르게 검색할 수 있습니다.

신속 검색에 검색할 재질명을 입력합니다. 원하신다면 국가/규격을 지정하신 후 검색 버튼을 클릭합니다.


관심 소재를 선택한 후, 선택된 소재에 대한 피로 데이터의 링크를 클릭하십시오. 가능한 응력 - 변형률 곡선 기록의 개수는 링크 옆 괄호 안에 표시됩니다.


Total Materia 피로 데이터는 규격 사양서와 무관하므로, 어떠한 소그룹 내의 링크를 클릭하셔도 응력-변형률 곡선을 검토하실 수 있습니다. 응력 주기와 변형률 주기는 표와 그래프 두 가지 형태로 보실 수 있습니다.


데이터 출처에 관한 정확한 참조가 각 데이터에 주어져 있습니다. 아래의 예를 확인하십시오.


Total Materia 데이터베이스를 사용해 보실 수 있는 기회가 있습니다. 저희는 Total Materia 무료 체험을 통해 150,000명 이상의 사용자가 이용하고 있는 커뮤니티로 귀하를 초대합니다.