Electromagnetic Sorting of Ferrous Metals: Part One

요약:

Practice covers the procedure for sorting ferrous metals using the electromagnetic (eddy-current) method. The procedure relates to instruments using absolute or comparator-type coils for distinguishing variations in mass, shape, conductivity, permeability, and other variables such as hardness and alloy that affect the electrical or magnetic properties, or both, of the material. The selection of samples to determine sorting feasibility and to establish calibration standards is also included.

The two techniques that are primarily used in electromagnetic sorting employ the absolute (single-) and comparative (two-) coil methods. The decision of whether to use single-coil or two-coil operation is usually determined by empirical data.

Practice covers the procedure for sorting ferrous metals using the electromagnetic (eddy-current) method. The procedure relates to instruments using absolute or comparator-type coils for distinguishing variations in mass, shape, conductivity, permeability, and other variables such as hardness and alloy that affect the electrical or magnetic properties, or both, of the material. The selection of samples to determine sorting feasibility and to establish calibration standards is also included.

Sorting Practice

The two techniques that are primarily used in electromagnetic sorting employ the absolute (single-) and comparative (two-) coil methods. The decision of whether to use single-coil or two-coil operation is usually determined by empirical data.

In the absolute-coil method, the equipment is calibrated by placing standards of known properties in the test coil. The value of the tested parameter (for instance, hardness, alloy, or heat treatment) is read on the scale of an indicator. In the comparative-coil method, the test piece is compared with a reference piece and the indication tells whether the piece is within or outside of the required limits.

In absolute coil method, a sample of known classification is inserted in the test coil, and the controls of the instrument are adjusted to obtain an indication. The test is then continued by inserting the pieces to be sorted into the test coil, and observing the instrument indication.

In comparative coil method, known reference pieces representing the minimum or maximum limits of acceptance, or both, are inserted in the reference coil and test coil. The instrument controls are adjusted for appropriate indications. The test is then continued by inserting the pieces to be sorted in the test coil, leaving a known reference in the reference coil, and observing the instrument indication.

The range of instrument indication must be so adjusted in the initial step that the anticipated deviations will be recognized within the range of readout according to whether two- or three-way sorts are to be accomplished.

Both absolute and comparative methods require comparing the pieces to be tested with the reference piece(s). Two or more samples representing the limits of acceptance may be required. In the absolute method the electrical reference is generated by a test piece. In the comparative method any electromagnetic condition that is not common to the test specimen and the standard will produce an imbalance in the system. The comparative method is usually more stable, as it normally suppresses all internal and external disturbances.

The testing process may consist of manual insertion of one piece after another into the test coil, or an automated feeding and classifying mechanism may be employed. In automated setups, it is sometimes necessary to stop each piece momentarily in the test coil while the reading is being taken, especially if low test frequencies are employed.

Significance and Use

Absolute and comparative methods provide a comparative measure for sorting large quantities of ferrous parts of stock with regard to composition; condition; and structure or processing, or both.

The comparative or two-coil method is used when high-sensitivity testing is required. The advantage of this method is that it almost completely suppresses all internal or external disturbances such as temperature variations or stray magnetic fields. The two-coil method is normally used when harmonic evaluation is employed for sorting.

The ability to accomplish satisfactorily these types of separations is dependent upon the relation of the magnetic characteristics of the ferromagnetic parts to their physical condition. These methods may be used for high-speed sorting in a fully automated setup where the speed of testing may approach ten pieces per second depending on their size and shape.

The success of sorting ferromagnetic material depends mainly on the proper selection of magnetic field strength and frequency of signal in the test coil, fill factor, and variables present in the sample. The degree of accuracy of a sort will be affected greatly by the coupling between the test coil field and the tested part and the accuracy with which the tested part is held in the test coil field during the measuring period.

When high currents are used in the test coil, a means should be provided to maintain a constant temperature of the test standard in order to minimize drift of the test results.

기술 자료 검색

검색할 어구를 입력하십시오:

검색 범위

본문
키워드

머릿글
요약

이 문서는 전체 문서 중 일부분입니다. 이 주제에 대해 더 읽고 싶으시면 아래 링크를 클릭하시면 됩니다.

물리적 특성은 Total Materia 데이터베이스 내 많은 재질에서 검토하실 수 있습니다.

데이터는 규격의 공식 정보와 Total Materia의 강력한 상호 참조 표를 통해 검색 가능하며 이는 물리적 특성 데이터 검색에 매우 효과적일 것입니다!

신속 검색에 검색할 재질명을 입력합니다. 원하신다면 국가/규격을 지정하신 후 검색 버튼을 클릭합니다.


관심 있는 재질을 선택하신 후, 물리적 특성 링크를 클릭하셔서 선택된 재질의 데이터를 검토합니다. 물리적 특성 데이터 기록의 개수는 링크 옆에 괄호 안에 표시됩니다.


물리적 특성은 원래 데이터 값에 따라 표시됩니다. 규격에 의한 공식 데이터는 공식 탭에서 찾을 수 있고, 다른 출처를 통해 검색된 재질의 데이터는 자신의 탭에 표시 됩니다.


유사 재질 탭에는 원래 재질과 비슷하며 물리적 특성이 포함된 재질을 표시합니다. 등가 재질 검색 시에 매우 유용할 수 있습니다!


일반 탭은 특성 데이터에 대한 일반적인 개요를 제공하며 추가 조사를 위한 유용한 출발점으로 사용될 수 있습니다.


Total Materia 데이터베이스를 사용해 보실 수 있는 기회가 있습니다. 저희는 Total Materia 무료 체험을 통해 150,000명 이상의 사용자가 이용하고 있는 커뮤니티로 귀하를 초대합니다.