The Metal Injection Molding (MIM) Process


MIM is a relatively new injection molding method by which metal powders are combined with thermoplastic binder to generate complex molded shapes.
The technique generally has common application in a number of industry sectors such as aerospace, automotive, and medical devices.

Metal Injection Molding (MIM) is a relatively new production method that was developed in the 1970s. In the MIM process, fine metal powder is mixed with a thermoplastic resin called the binder, and the mixture is then processed into a molded body with a complex shape by the same injection molding method as that for general plastic. After that, the binder is removed from the molded body by heating or using a solvent, and the resulting molded body is sintered at high temperature to obtain the final product. Compared to conventional powder metallurgy, MIM can make a product with higher density, which is to say increased strength.

This manufacturing method allows to produce metal parts with complicated shapes and small tolerances, with the ease and automation of the injection molding machine. The process however requires some extra steps to accomplish this.

The metal injection molding process consists of the following steps:

  • MIXING: At the mixing stage, both metal powder and the polymeric binder (thermoplastic types) are combined into a homogeneous mixture;
  • INJECTION MOLDING: Injection molding machines are used to inject the green part. The mould dimensions are calculated by applying a "shrinkage factor" which is around 15-20% for most material to the part drawing;
  • DEBINDING: Debinding is a process whereby the binder is removed from the molded part, leaving behind the metal 'skeleton' that retains the molded shape. This remaining element is known as the 'brown' part;
  • SINTERING: Finally, the brown parts are sintered The metal powder particles will be bonded together and consequently this step provides the strength in the finished product.

Figure 1: The MIM Process

Metal injection molding is best suited for the high-volume production of small metal parts. As with injection molding, these parts may be geometrically complex and have thin walls and fine details. The use of metal powders enables a wide variety of ferrous and non-ferrous alloys to be used and for the material properties (strength, hardness, wear resistance, corrosion resistance, etc.) to be close to those of wrought metals. Also, because the metal is not melted in the MIM process (unlike metal casting processes), high temperature alloys can be used without any negative affect on tool life. Metals commonly used for MIM parts include the following:

  • Low alloy steels
  • Stainless steels
  • High-speed steels
  • Irons
  • Cobalt alloys
  • Copper alloys
  • Nickel alloys
  • Tungsten alloys
  • Titanium alloys
Metal parts manufactured from the MIM process are found in numerous industries, including aerospace, automotive, consumer products, medical/dental, and telecommunications. MIM components can be found in cell phones, sporting goods, power tools, surgical instruments, and various electronic and optical devices.


1. S. Ikeda, S. Satoh, N. Tsuno, T. Yoshinouchi, M. Satake: Development of Metal Injection Molding Process for aircraft engine part production, IHI Engineering Review, Vo l. 47 N°,1, p.44-48, 2014; Accessed July 2019;

2. S. Engström: Metal injection Molding-A review of the MIM process and its optimization, PhD thesis, Plastteknik, ARCADA, 2017, Accessed August 2019;

3. S. Banerjee, C. Grove: Metal Injection Molding (MIM) process and production, Accessed July 2019;

4. Metal Injection Molding, Accessed July 2019.

Keresés a Tudástárban

Adja meg a keresendő kifejezést:

Keresés a következő szerint

Teljes szöveg


The Total Materia database contains many thousands of casting materials across a large range of countries and standards.

Where available, full property information can be viewed for materials including chemical composition, mechanical properties, physical properties, advanced property data and much more.

Using the Advanced Search page, it is possible to search for materials by their key descriptive words detailed in the standard title by using the Standard Description function of Advanced Search.

It maybe that you need to further narrow the search criteria by using the other fields in the Advanced Search page e.g. Country/Standard.

Then click Submit.

solution img

A list of materials will then be generated for you to choose from.

solution img

After clicking a material from the resulting list, a list of subgroups derived from standard specifications appears.

From here it is possible to view specific property data for the selected material and also to view similar and equivalent materials in our powerful cross reference tables.

solution img

For example, by clicking on the chemical composition link on the subgroup page it is possible to view chemical composition data for the material.

solution img

For you’re a chance to take a test drive of the Total Materia database, we invite you to join a community of over 150,000 registered users through the Total Materia Free Demo.