深拉伸用钢:第一部分
非铁合金的热机械处理(TMT):第一部分
DataPLUS 模块提供上万种金属材料和非金属材料的腐蚀数据、焊接性能、尺寸与公差信息以及涂层信息。 点击这里了解更多。
Overview of Total Materia database 2022 年 1月 12日
Overview of Total Materia database 2022 年 1月 13日
在使用Total Materia几个月之后,以及深刻体验过所有潜在功能之后,我非常感谢你们的卓越工作和持续稳定的升级服务。 Total Materia始终是用来达成这一目的唯一工具。
M. Manfredini Bonfiglioli Industrial Gearmotors 博洛尼亚, 意大利
我们的目标很简单,就是让 Total Materia成为全球工程师在材料领域的首选一站式解决方案
Prof. Dr. Viktor Pocajt, CEOKey to Metals AG
Continuous Reduced Iron Steelmaking Process (CRISP) is a creative steelmaking technology which uses stationary electric arc furnace to continuously melt and decarburize DRI and other metallic materials to produce steel. The main benefits of CRISP include cost savings through improved yield, increased furnace refractory life and a greatly reduced total specific energy requirement, to name but a few.
Numerous advancements have been made in the DRI-based steelmaking processes in the last decade. Charging hot DRI to the electric arc furnace (EAF), directly from a DR module is arguably the most important improvement in this area. The energy saving associated with the hot charge practice is estimated around 20 to 30% compared to the current cold-fed EAFs. Nevertheless, continuous discharge of hot DRI to EAF is complicated by the batch operation nature of the EAFs.
Continuous Reduced Iron Steelmaking Process (CRISP) is a novel steelmaking technology, being developed by Hatch that utilizes a stationary electric arc furnace to continuously melt and decarburize DRI and other metallic materials to produce steel. The key feature of CRISP technology is significant modification of the conventional EAF process parameters to extend the refectory life beyond one year.
The flowsheet of CRISP is shown in Figure 1. As depicted, DRI is produced in the DR or reduction furnace and fed to the furnace, along with scrap and iron oxide. The charge materials are fed continuously into the CRISP furnace that is essentially a six in-line electrode stationary EAF. Continuously operated CRISP EAF close links two processes: DRI production in the reduction furnace and continuous casting.
The decarburization of DRI is accomplished with zero gaseous oxygen and through the oxidation by slag; that is supplied with iron oxide as ore lump, pellet or mill scale. Since the charge is introduced into the furnace continuously, it is critical to adjust the specific rate of material feeding in order to meet the requirements for sufficient decarburization inside the furnace. Steel and slag are periodically tapped out through slag and metal top-holes in a similar approach to BF. After steel is tapped out, the remainder of the process is similar to the conventional steelmaking including ladle refining and casting.
The essence of the unique features of the CRISP technology is:
These differences lead to significant operational benefits, the most important being:
References 1. M. Barati, J. Li, et al: Slag engineering aspects of the CRISP steelmaking technology, Accessed JAN 2019; 2. E. S. Kiasaraei: Decarburization and melting behavior of direct-reduced iron pellets in steelmaking slag, MSc thesis, University of Toronto, Canada, 2010, Accessed JAN 2019; 3. F. Wheeler, Y. Gordon, S. Broek, I. Cameron: The successful piloting of CRISP, The successful piloting of CRISP, the innovative continuous steelmaking technology, La Metallurgia Italiana, No2, 2010, p.27-33.
Date Published: Jul-2019
输入搜索词:
搜索项
全文 关键字
标题 摘要
The Total Materia database contains many thousands of structural steel materials across a large range of countries and standards.
Where available, full property information can be viewed for materials including chemical composition, mechanical properties, physical properties, advanced property data and much more.
Using the Advanced Search page, it is possible to search for materials by general application by using the Full Text Search function of Advanced Search.
It maybe that you need to further narrow the search criteria by using the other fields in the Advanced Search page e.g. Country/Standard.
Then click Submit.
Total Materia A list of materials will then be generated for you to choose from.
After clicking a material from the resulting list, a list of subgroups derived from standard specifications appears.
From here it is possible to view specific property data for the selected material and also to view similar and equivalent materials in our powerful cross reference tables.
For example, by clicking on the chemical composition link on the subgroup page it is possible to view chemical composition data for the material.
Other critical property data for structural steels can also be viewed including mechanical property data covering yield stress, tensile stress, elongation and impact data.
For you’re a chance to take a test drive of the Total Materia database, we invite you to join a community of over 150,000 registered users through the Total Materia Free Demo.