深拉伸用钢:第一部分
非铁合金的热机械处理(TMT):第一部分
DataPLUS 模块提供上万种金属材料和非金属材料的腐蚀数据、焊接性能、尺寸与公差信息以及涂层信息。 点击这里了解更多。
Overview of Total Materia database 2022 年 1月 12日
Overview of Total Materia database 2022 年 1月 13日
在使用Total Materia几个月之后,以及深刻体验过所有潜在功能之后,我非常感谢你们的卓越工作和持续稳定的升级服务。 Total Materia始终是用来达成这一目的唯一工具。
M. Manfredini Bonfiglioli Industrial Gearmotors 博洛尼亚, 意大利
我们的目标很简单,就是让 Total Materia成为全球工程师在材料领域的首选一站式解决方案
Prof. Dr. Viktor Pocajt, CEOKey to Metals AG
From the 1980’s it has been generally recognized that there has been an overall drop in the quality of raw materials in the steel making industry. Coupled with a drive from technology to provide consistently cleaner steels means that producers have had to work on optimizing processes to meet demands.
Since the 1980s it can be observed that the quality of raw materials and fuels used for iron and steel making has become continuously worse. As a result this global trend has led to a deteriorating hot metal quality in terms of higher contents of impurities. At the same time steelmakers have been faced with increasing requests to produce clean steel with low and ultra-low content of sulphur and phosphorous in particular. Decreasing availability of premium high quality raw materials and fuels with low contents of unwanted and harmful elements and onwardly increased pressure to lower production cost by purchasing cheap raw materials have led to this doom loop.
In the past, generally the Western steelmakers responded to this challenge by optimizing their facilities, improving the degree of automation, introducing bottom stirring in BOF converters, and to say by squeezing the productivity of their aggregates to ever new records. But these efforts have come to an end and further progress can be only attained with alternative concepts.
A modern steelworks consists of a series of process steps where crude iron is gradually refined to steel of a certain quality and casted in a continuous manner into large pieces, e.g. rectangular slabs, which are treated further in the rolling mill. The crude iron is produced in the blast furnace by reduction of iron ore.
The huge slag generation due to blowing oxygen in the torpedo ladle during dephosphorization and a highly restricted scrap usage ratio, led Nippon Steel’s Nagoya works to modify their BOF converter into a HM pretreatment converter for De-Si, De-P, and DeS. After tapping and separation of the slag the hot metal is then charged to another converter where DeC is executed. Figure 1 shows the flow diagram of this process, which was named “LD-ORP (LD – Optimized Refining Process)”.
In Japan, at Nagoya Works the LD-optimized refining process (LD-ORP) was developed, and began to use it commercially. The process consisted of charging of hot metal into a converter designated exclusively for dephosphorization; removal of Si and P by blowing mainly oxygen gas, taking advantage of the large free board that torpedo ladle cars lacked; removal of S by bottom blowing of flux; deslagging; and transfer to a common converter for decarburization (Figure 1)). Despite the trouble of the transfer from one converter to another, the process has been applied to increasing amount of hot metal in appreciation of low CaO consumption, high yield, and stable and high-speed operation of converters, and it was aimed to be applied to all hot metal.
As stated above, hot-metal pretreatment methods taking advantage of converters showed rapid advances since the 1990s, and as a result, the shares of the LD-ORP and MURC processes in hot-metal dephosphorization increased, replacing conventional processes using torpedo ladle cars or hot-metal ladles, as seen in Figure 2. As of the beginning of 2012, the converter dephosphorization methods are responsible for about 95% of the hot-metal dephosphorization of the company; our plan is to make the Figure reach 100% in 2013.
Date Published: Mar-2016
输入搜索词:
搜索项
全文 关键字
标题 摘要
Physical properties are available for a huge number of materials in the Total Materia database.
Data is available through official information from standards and also through Total Materia unique similar materials cross referencing functionality, adding another dimension to your search for physical properties data!
Enter the material of interest into the quick search field. You can optionally narrow your search by specifying the country/standard of choice in the designated field and then clicking "Search".
After selecting the material of interest to you, click on the Physical Properties link to view data for the selected material. The number of physical property data records is displayed in brackets next to the link.
Physical properties are displayed according to the origin of the data set. Official data from standards can be found under the official tab, data deriving from other sources for the material will also be displayed under its own tab.
The similar materials tab displays all materials that are similar to the original material and have physical properties inserted. This can be very handy when looking for equivalent materials!
The typical tab gives a generic overview of property data for the material for you to use as a useful starting point for further investigation.
For you’re a chance to take a test drive of the Total Materia database, we invite you to join a community of over 150,000 registered users through the Total Materia Free Demo.