深拉伸用钢:第一部分
非铁合金的热机械处理(TMT):第一部分
DataPLUS 模块提供上万种金属材料和非金属材料的腐蚀数据、焊接性能、尺寸与公差信息以及涂层信息。 点击这里了解更多。
Overview of Total Materia database 2022 年 1月 12日
Overview of Total Materia database 2022 年 1月 13日
在使用Total Materia几个月之后,以及深刻体验过所有潜在功能之后,我非常感谢你们的卓越工作和持续稳定的升级服务。 Total Materia始终是用来达成这一目的唯一工具。
M. Manfredini Bonfiglioli Industrial Gearmotors 博洛尼亚, 意大利
我们的目标很简单,就是让 Total Materia成为全球工程师在材料领域的首选一站式解决方案
Prof. Dr. Viktor Pocajt, CEOKey to Metals AG
Although after the transient startup phase the process of cold extrusion is classed as steady-state, in reality, due to changing contact conditions and in process temperature variation this is not accurate. There are however a wide range of useful benefits from cold extrusion including elimination of welding connections, flexibility of branch positioning, seamless metallurgical integrity and extended service life of the materials to name but a few.
Extrusion is a discontinuous process in which the second billet is not loaded until the first billet is extruded. During the start-up of extrusion, the extrusion load increases as the material is forced to fill the container and flow out of the die. After the transient start-up phase the process is often considered to be in steady-state. In reality the process is never in a steady-state phase since the contact conditions are constantly changing and the temperature varies during the process. Steady-state may however be a good approximation if the friction is negligible and the temperature changes are small. The material flow however, is steady-state during the greater part of the extrusion process and when the billet has been extruded to a small discard there is high resistance to radial flow towards the center and the load increases heavily. Extrusion is then interrupted.
Benefits of cold extrusion
Cold extrusion is used extensively in the engineering sector and provides significant benefits compared to welding and hot extrusion including:
Cold extrusion processes are known to give a high output capacity and to permit near-net shape production e.g. of automobile parts. During cold extrusion, large plastic deformations develop due to the large reduction of the work piece cross section. These large plastic deformations result in a grain elongation as well as in a change of grain orientation. The plastic deformation is inhomogeneous throughout the work piece cross section, thus texture gradients as well as residual stresses arise.
The sign, the magnitude and the distribution of the residual stresses severely influence the fatigue limit and the stress corrosion resistance of the work piece. Here, in order to study the texture and the residual stress distribution of cold forward extruded steel samples a recently developed new method using white high energy synchrotron radiation has been employed in addition to X-ray and neutron diffraction.
The samples analyzed in the work of Puzzala A. et al was a German steel grade C15 which were full forward extruded to rods of 15 mm diameter at the Institut für Umformtechnik, Universität Stuttgart, Germany, varying process parameters, e.g. the conversion ratio φ (φ=0.9; 1.2; 1.6) and the ejection mode.
The material flow during the extrusion is visible in the microstructure of the samples. While in the rod kernel a homogeneous elongation of the grains exists (Figure 2) the material flow is obstructed due to friction at the surface of the samples, thus the microstructure near the surface is less homogeneous and the grains are less elongated. Transmission electron microscopy reveals that at high conversion rates the dislocations build cell structures (Figure 3).
Date Published: Nov-2013
输入搜索词:
搜索项
全文 关键字
标题 摘要
本文属于一系列文章。点击下面的链接,你可以看到有关这个话题的更多文章。
The Total Materia database contains a large number of metallography images across a large range of countries and standards.
Using the specifically designed Metallography tab in the menu bar, you can select the material of interest to you from the list of materials with metallography data included.
Metallography data can also be found through our standard quick search and will show relevant data is available through the standard Subgroup page for the material of interest.
Simply enter your material designation in to the "Material" field and select the standard of interest if known, then click "Search".
General information on microstructure can be found along with the relevant chemical composition for the material of interest.
Where available, a series of images will be provided showing a range of structural detail at various levels of magnification.
It is also possible to select different condition options from the "Select condition" drop-down to show metallography images under different process and heat treatment states.
For you’re a chance to take a test drive of the Total Materia database, we invite you to join a community of over 150,000 registered users through the Total Materia Free Demo.