深拉伸用钢:第一部分
非铁合金的热机械处理(TMT):第一部分
DataPLUS 模块提供上万种金属材料和非金属材料的腐蚀数据、焊接性能、尺寸与公差信息以及涂层信息。 点击这里了解更多。
Overview of Total Materia database 2022 年 1月 12日
Overview of Total Materia database 2022 年 1月 13日
在使用Total Materia几个月之后,以及深刻体验过所有潜在功能之后,我非常感谢你们的卓越工作和持续稳定的升级服务。 Total Materia始终是用来达成这一目的唯一工具。
M. Manfredini Bonfiglioli Industrial Gearmotors 博洛尼亚, 意大利
我们的目标很简单,就是让 Total Materia成为全球工程师在材料领域的首选一站式解决方案
Prof. Dr. Viktor Pocajt, CEOKey to Metals AG
Steels used for making tools, punches, and dies are perhaps the hardest, the strongest, and toughest steels used in industry. It is obvious that tools used for working steels and other metals must be stronger and harder than the steels or material they cut or form. The metallurgical characteristics of various compositions of tool steels are extremely complex. There are hundreds of different makes and types of tool steels available and each may have a specific composition and end use.
Steels used for making tools, punches, and dies are perhaps the hardest, the strongest, and toughest steels used in industry. It is obvious that tools used for working steels and other metals must be stronger and harder than the steels or material they cut or form.
The metallurgical characteristics of various compositions of tool steels are extremely complex. There are hundreds of different makes and types of tool steels available and each may have a specific composition and end use.
In the United States, the Society of Automotive Engineers, in cooperation with the American Iron and Steel Institute, has established a classification system which relates to the use of the material and its composition or type of heat treatment. This classification system divides the tool and die steels into separate categories that are shown in Table 1.
In general, tool steels are basically medium- to high-carbon steels with specific elements included in different amounts to provide special characteristics. The carbon in the tool steel is provided to help harden the steel to greater hardness for cutting and wear resistance. Other elements are added to provide greater toughness or strength.
In some cases elements are added to retain the size and shape of the tool during its heat treat hardening operation or to make the hardening operation safer and to provide red hardness so that the tool retains its hardness and strength when it becomes extremely hot. Various alloying elements in addition to carbon are chromium (Cr), cobalt (Co), manganese (Mn), molybdenum (Mo), nickel (Ni), tungsten (W), and vanadium (V).
The addition of elements produces different effects on the resultant composition as follows:
The other way for classifying tool steels is according to the type of quench required to harden the steel. The most severe quench after heating is the water quench (water-hardening steels). A less severe quench is the oil quench obtained by cooling the tool steel in oil baths (oil-hardening steels). The least drastic quench is cooling in air (air-hardening steels).
Tool steels and dies can also be classified according to the work that is to be done by the tool. This is based on class numbers.
Date Published: Jul-2006
输入搜索词:
搜索项
全文 关键字
标题 摘要
The Total Materia database contains many thousands of tool steel materials across a large range of countries and standards.
Where available, full property information can be viewed for materials including chemical composition, mechanical properties, physical properties, advanced property data and much more.
Using the Advanced Search page, it is possible to search for materials by their key descriptive words detailed in the standard title by using the Standard Description function of Advanced Search.
It maybe that you need to further narrow the search criteria by using the other fields in the Advanced Search page e.g. Country/Standard.
Then click Submit.
A list of materials will then be generated for you to choose from.
After clicking a material from the resulting list, a list of subgroups derived from standard specifications appears.
From here it is possible to view specific property data for the selected material and also to view similar and equivalent materials in our powerful cross reference tables.
For example, by clicking on the chemical composition link on the subgroup page it is possible to view chemical composition data for the material.
For you’re a chance to take a test drive of the Total Materia database, we invite you to join a community of over 150,000 registered users through the Total Materia Free Demo.