深拉伸用钢:第一部分
非铁合金的热机械处理(TMT):第一部分
DataPLUS 模块提供上万种金属材料和非金属材料的腐蚀数据、焊接性能、尺寸与公差信息以及涂层信息。 点击这里了解更多。
Overview of Total Materia database 2022 年 1月 12日
Overview of Total Materia database 2022 年 1月 13日
在使用Total Materia几个月之后,以及深刻体验过所有潜在功能之后,我非常感谢你们的卓越工作和持续稳定的升级服务。 Total Materia始终是用来达成这一目的唯一工具。
M. Manfredini Bonfiglioli Industrial Gearmotors 博洛尼亚, 意大利
我们的目标很简单,就是让 Total Materia成为全球工程师在材料领域的首选一站式解决方案
Prof. Dr. Viktor Pocajt, CEOKey to Metals AG
The solid-solution hardening of carbon has a major effect on the strength of martensite, but ductility can only be obtained at low carbon levels. Although alloying elements affect hardenability, they have a minor effect on hardness except to reduce it at high carbon levels by causing austenite to be retained.
Alternative ways of improving the strength of alloy steels are:
(1) Grain refinement, which increases strength and ductility. This can be developed by severely curtailing the time after the cessation of forging at some low temperature of austenite stability or by rapid heating, coupled with a short austenitising period. Fine grain is produced in 9% Ni steel by tempering fine lath martensite.
(2) Precipitation hardening by carbide, nitride or intermetallic compounds. (a) By secondary hardening, e.g. 12% Cr steel with additions. (b) Age hardening a low carbon Fe-Ni lath martensite supersaturated with substitutional elements, e.g. maraging. (c) Age hardening of austenite, e.g. stainless steels. Phosphorus and titanium are common additions. Stacking faults are often associated with fine carbide precipitates, and strength can be raised by increasing the number of stacking faults (i.e. lower fault energy). (d) Controlled transformation 18/8 austenite steels in which transformation to martensite is induced by refrigeration or by strain.
(3) Thermomechanical treatments which may be classified into three main groups: (a) Deformation of austenite prior to the transformation. Ausforming consists of steel deforming in a metastable austenitic condition between Ac1 and Ms (e.g. 500°C called LT) followed by transformation to martensite and light tempering (Fig. 1). This results in increased dislocation density in the martensite and a finer carbon precipitation on tempering. Strengths up to 1800 MPa can be obtained without impairing the ductility (~6 % deformation). Steels must possess a TTT-curve with a large bay of stable austenite, e.g. 826 M40. Typical application is for leaf springs.
Figure 1. Methods of thermomechanical treatment
Deformation of stable austenite just above Ac3 before cooling (called HT). The properties are somewhat inferior to those produced by ausforming. Deformation induced transformation originally used in Hadfield 13% Mn steel, but can be adapted to metastable austenitic stainless steels. The fully austenitic steel is severely warm-worked above the lowest temperature at which martensite is produced during the straining. The distinctive property is the high rate of straining hardening, which increases ductility.
(b) Deformation of austenite during the transformation Isoforming is the deformation of a steel (e.g. 1% Cr) during the isothermal transformation to pearlite, which refines the structure and improves fracture toughness (Fig. 1). A somewhat similar thermomechanical process can be used in the bainitic region, producing bainite and martensite. Zerolling consists in forming martensite by deformation at subzero temperatures to strengthen 18/8 austenitic steels. The amount of martensite is influenced by alloy composition and increased with deformation and lowering of the temperature.
(c) Deformation after the transformation of austenite Marforming consists of deforming the maraging steel in the soft martensitic condition, generally cold. There is a pronounced increase in strength of the subsequent maraged product. With other steels, considerable increases in strength can be obtained by straining martensite (~3 %) either in the untempered or tempered condition. A strengthening effect also occurs on re-tempering, probably due to the resolution and reprecipitation of the carbides in a more finely dispersed form. Strain tempering and dynamic strain ageingBoth processes involve about 5% deformation at the room temperature between two stages of tempering -- strain tempering -- while in dynamic strain ageing deformation is concurrent with tempering.
Date Published: Nov-2000
输入搜索词:
搜索项
全文 关键字
标题 摘要
Heat treatment diagrams are available for a huge number of materials in the Total Materia database.
Heat treatment diagrams covering hardenability, hardness tempering, TTT and CCT can all be found in the standard dataset.
To select materials by special properties, you can use the special search check boxes in the Advanced Search module.
To define the search criteria, all you have to do is select the country/standard of interest to you from the ‘Country/Standard’ pop-up list and to check ‘Heat Treatment Diagram’ box, situated in the Special Search area of the form in the lower part of the Advanced Search page.
Click Submit.
After selecting the material of interest to you, click on the Heat Treatment link to view data for the selected material. The number of heat treatment records is displayed in brackets next to the link.
All available heat treatment information will then be displayed for the chosen material.
For you’re a chance to take a test drive of the Total Materia database, we invite you to join a community of over 150,000 registered users through the Total Materia Free Demo.