Tungsten Heavy Alloys


The name "tungsten" is derived from the Swedish term meaning "heavy stone". Tungsten has been assigned the chemical symbol W after its German name Wolfram.
WHAs are produced by a powder metallurgy (P/M) technique known as liquid phase sintering (LPS), in which completely dense, fully alloyed parts are formed from pressed metal powders at a temperature less than half the melting point of pure tungsten.

The name "tungsten" is derived from the Swedish term meaning "heavy stone". Tungsten has been assigned the chemical symbol W after its German name wolfram. Tungsten has the highest melting point (3410°C or 6170°F) of all metals. The extremely high melting point of pure tungsten makes all the common manufacturing techniques used for metals such as iron impractical.

Specialized methods make it possible for the processing of pure tungsten into rod, sheet, and wire for a wide variety of high temperature applications including incandescent lamp wire, TIG welding electrodes, and high temperature heat shielding.

Another important industrial property of tungsten is its high density of 19.3 g/cc (0.70 lbs/in3). In addition to high gravimetric density, its high radiographic density makes it an ideal material for shielding or collimating energetic x- and γ-radiation. For such applications, tungsten is commonly alloyed in order to circumvent the extremely high processing temperatures that would otherwise be required to melt and cast the pure metal.

Tungsten heavy alloys (WHAs) are ideally suited to a wide range of density applications, offering a density approaching that of pure tungsten but without the very costly processing and inherent size and shape limitations of the former.

WHAs are produced by a powder metallurgy (P/M) technique known as liquid phase sintering (LPS), in which completely dense, fully alloyed parts are formed from pressed metal powders at a temperature less than half the melting point of pure tungsten. While sintered steel and copper alloy parts commonly contain significant residual porosity that may require polymeric infiltrants to seal, sintered WHAs have a nonporous surface.It has excellent radiation resistance, thermal and electric conductivities, corrosion resistance and is also machinable.

WHA parts are manufactured from very fine, high purity metal powders – typically tungsten, nickel, and iron. The blended metal powder is compacted under high pressure (up to 30 ksi) to form a specific shape that is very close to the geometry of the final part. By utilizing this near net shape forming approach, economy is realized by the elimination of excess material and the time and energy necessary to remove unwanted stock from mill shapes.

Pressed parts are then subjected to high temperature sintering in hydrogen. As the parts are slowly heated, the hydrogen reduces metal oxides present and provides a clean, active surface on each of the very small metal particles. As the temperature increases further, chemical diffusion takes place between particles. Neck growth occurs between particles, and surface energy drives pore elimination and part densification.

The pressed section shrinks uniformly, with about 20% linear shrinkage (equating to approximately 50% volumetric shrinkage) being typical. Once the temperature is sufficiently high to form the liquid phase, any remaining densification occurs very quickly as the alloy assumes a "spheroidized" microstructure by a mechanism know as Ostwald Ripening. The sintered structure of a common commercial WHA is two-phase, consisting of a linked network of tungsten spheroids contained in the ductile matrix phase.

The spheroidized microstructure shown below is typical for most commercial WHA products. The rounded phase (~30-60 μm in diameter) is essentially pure tungsten, which is surrounded by a metallic nickel-iron binder phase containing some dissolved tungsten. This structure provides the maximum mechanical properties for a given alloy composition. Through the process of pressing and LPS, metal powders are transformed into fully dense shapes that are very close to the dimensions of the finished parts.

Figure 1: WHA "spheroidized" microstructure

WHA’s provide a unique combination of density, mechanical strength, machinability, corrosion resistance, and economy. Consequently, WHAs are widely used for counterweights, inertial masses, radiation shielding, sporting goods, and ordnance products. These versatile materials provide distinct advantages when compared to alternate high density materials, as seen in the Table 1.

Table 1: Compared properties

Material Density
Stiffness Machin-
Toxicity Radio-
WHA 17.0 -19.0 moderate high excellent low none moderate
Lead max 11.4 very low very low very low high none low
Uranium 18.7-18.9 moderate medium special high present high

As can be seen from this data, WHA overcomes the toxicity, deformability, and inferior density of lead and its alloys. Likewise, it can provide equivalent density to depleted uranium (DU) but without the special machining considerations (necessary due to its pyrophoricity) and licensing requirements for a radioactive substance. WHA is therefore truly the material of choice for high density applications. These unique alloys provide the designer with many new freedoms.


Tables 2 and 3 are show the field of application and properties of some tungsten heavy alloys.

Table 2: Tungsten Heavy Alloy Grade Application Guide

Grade Application
HA170 HA 170 is the most ductile and readily machinable grade in the tungsten heavy alloy family. Common application areas include counterbalancing and inertial damping weights for the aviation and aerospace industries, crankshafts and chassis weights for auto racing, bucking bars for rivet setting, and radiation shielding.
HA175 HA175 is commonly used to produce chatter-resistant boring bars, grinding quills, and tool shanks as well as radiation shielding components.
HA180 HA180 is often applied where size is a factor in the placement of balance or ballast weights. Other applications include radiation shields and collimators of x-ray or gamma ray beams.
HA185 The densest of the the Ni-Fe binder alloys, HA185 is the preferred grade for radiation shielding in the medical imaging industry.
HA170C Employing copper as a substitute for iron in the binder phase, HA170C is nonmagnetic and ideal for radiation shielding where the shield is in close proximity to a magnetic field.
HA180C HA180C is a denser version of HA170C that offers somewhat greater shielding efficiency in situations where large shields in a nonmagnetic alloy are needed.

Table 2: Tungsten Heavy Alloy Grade Application Guide

FCC Grade HA170 HA175 HA180 HA185 HA170C HA180C
Matrix (wt.%) 90.0%W 92.5%W 95.0%W 97.0%W 90.0%W 95.0%W
Binder 10.0%Ni-Fe 7.5%Ni-Fe 5.0%Ni-Fe 3.0%Ni-Fe 10.0%Ni-Fe 5.0%Ni-Fe
MIL-T-21014RevD Class 1 Class 2 Class 3 Class 4 Class 1 Class 3
SAE-AMS-T-21014 Class 1 Class 2 Class 3 Class 4 Class 1 Class 3
ASTM B777-07 Class 1 Class 2 Class 3 Class 4 Class 1 Class 3
AMS 7725C 7725C - - - - -
Nominal Density
17.0 17.5 18.0 18.5 17.0 18.0
Nominal Density
0.614 0.632 0.650 0.668 0.614 0.650
Typical Hardness
26 26 28 30 26 28
Ultimate Tensile
Strength-Min (psi)
110,000 110,000 105,000 100,000 94,000 94,000
0.2% Offset Yield
Strength-Min (psi)
75,000 75,000 75,000 75,000 75,000 75,000
Nonmagnetic Nonmagnetic

Search Knowledge Base

Enter a phrase to search for:

Search by

Full text


The Total Materia database contains many refractory metal materials across a large range of countries and standards.

Where available, full property information can be viewed for materials including chemical composition, mechanical properties, physical properties, advanced property data and much more.

Using the Advanced Search page, define the search criteria by selecting ‘Reactive and refractory metals’ in the Group of Materials pop-up list. It maybe that you need to further narrow the search criteria by using the other fields in the Advanced Search page e.g. Country/Standard.

Then click Submit.

solution img

A list of materials will then be generated for you to choose from.

solution img

After clicking a material from the resulting list, a list of subgroups derived from standard specifications appears.

From here it is possible to view specific property data for the selected material and also to view similar and equivalent materials in our powerful cross reference tables.

solution img

Click on the property data link of interest to you to view specific property data.

solution img

For you’re a chance to take a test drive of the Total Materia database, we invite you to join a community of over 150,000 registered users through the Total Materia Free Demo.