Selective Laser Melting: Part One

Sažetak:

What would an ancient craftsman think if he saw a complex metal part take shape before his eyes in a small cabinet? He would likely think he was witnessing magic.
That kind of magic is commonplace these days, as more companies market machines that use high-powered lasers and metallic powders to produce items directly from computer-aided designs.

Selective Laser Melting (SLM) is an Additive Manufacturing (AM) process that can produce near-net shape products from metallic powders, in a layer-by-layer fashion, directly from three-dimensional Computer-Aided Design (CAD) models. Besides being capable of printing complex geometries and allowing shorter manufacturing times, SLM is also capable of using different grades of steel, non-ferrous metals, ceramics, smart materials and even multiple materials in the same component. Parts produced by SLM can achieve near-full density, as the powders are fully melted and fused together during the process. SLM fabrication with materials such as 316L stainless steel, Ti6Al4V, Inconel 718 and AlSi10Mg has achieved relative densities of 99% or higher. This has allowed SLM to be applied in the fields of medicine and aerospace.

A simplified schematic of a typical SLM setup is shown in Figure 1. During the SLM process data is provided from a CAD model, which is then virtually sliced into thin layers. A plan for each layer is made automatically, resulting in appropriate scan paths. Through the scanner mirrors, a laser beam selectively scans and melts the powder that covers the surface of a substrate, according to the developed scan paths. After a layer is finished, the building platform is lowered by an amount equal to the layer thickness, and a new layer of powder is deposited. The process repeats until the completion of the whole part.

As mentioned above, to date, the SLM process has been able to fabricate metallic parts from different material powders, such as titanium alloys, nickel-based superalloys, aluminum alloys and stainless steels. Although the SLM process offers great advantages, such as manufacturing complex parts using less material, it is affected by many factors, such as laser energy input and scan speed, scan strategy, powder material, powder size and morphology. The SLM process involves complicated physics, such as absorption and transmission of laser energy, rapid melting and solidification of material, microstructure evolution, flow in a molten pool, and material evaporation. As a result of all these factors, the process tends to form defects like porosity, incomplete fusion holes, cracks, and impurities. These defects are detrimental to a fabricated part in terms of its mechanical and physical properties. These factors have so far limited the application of selective laser melting.



Figure 1: Schematic layout of a typical SLM setup

Benefits of SLM
Allows for complex geometries (e.g. tool inserts with conformal cooling channels)
Ideal process for prototyping
Reduces amount of material used

Best suited for
Low-volume fabrication
Complex parts

Materials for SLM
Titanium Ti-6Al-4V
Tool steel (1.2709)
Aluminum alloys
Stainless Steel 316L
Inconel 718

Industries for SLM processes

  • Automotive
  • Engineering
  • Medical and dental technology
  • Tooling
  • Aerospace
  • Motor sports



Figure 2: 3D models and functional prototypes with a complex geometry fabricated by SLM: (a) light-weight model with complex inner structure and two spiral cooling channels from SS grade 316L powder; (b) Kenics mixing element with a diameter of 3 mm and height of 15 mm and (c) sample with developed structure (pin diameter is 400 μm, height is 1 mm) from SS grade 904L powder; (d) part of combustion engine from Inconel 625 powder


References

1. C. Y. Yap, C. K. Chua, Z. L. Dong: An effective analytical model of selective laser melting, ISSN: 1745-2759 (Print) 1745-2767 (Online) Journal homepage: https://www.tandfonline.com/loi/nvpp20, VIRTUAL AND PHYSICAL PROTOTYPING, 2016, Vol. 11, N° 1, p.21–26;

2. B. Zhang, Y. Li, Q. Bai: Defect Formation Mechanisms in Selective Laser Melting: A Review, Chin. J. Mech. Eng., 2017, 30, p.515–527, DOI 10.1007/s10033-017-0121-5;

3. Selective Laser Melting (SLM), Accessed FEB 2020;

4. Selective Laser Melting – SLM processes with marhellabs, Accessed FEB 2020;

5. I. Yadroitsev, I. Smurov: Selective laser melting technology: from the single laser melted track stability to 3D parts of complex shape, Physics Procedia 5, (2010), p. 551–560

Pretražite bazu znanja

Unesite reč za pretragu:

Pretražite prema

Kompletan tekst
Ključne reči

Naslovi
Sažetak

U Total Materia bazi se nalazi više hiljada livenih materijala poreklom iz različitih zemalja i standarda.

U određenim slučajevima potpuna informacija o osobinama materijala obuhvata hemijski sastav, mehaničke osobine, fizičke osobine, napredne podatke o osobinama i još mnogo toga.

Korišćenjem modula Napredna pretraga možete pretražiti materijale prema ključnim rečima koje ćete uneti u polje Opis standarda.

Možete da suzite listu rezultata korišćenjem drugih polja u Naprednoj pretrazi, kao što je Zemlja/Standard.

Onda kliknite na Potvrdite.

solution img

Dobićete listu rezultata sa koje možete odabrati željeni materijal.

solution img

Za odabrani materijal pojaviće se lista podgrupa.

Ovde možete pogledati specifične podatke o osobinama izabranog materijala, a možete videti i slične i ekvivalentne materijale u našim Uporednim tabelama.

solution img

Na primer, klikom na link za hemijski sastav u podgrupi možete pregledati podatke o hemijskom sastavu materijala.

solution img

Imate priliku da isprobate Total Materia bazu podataka. Pozivamo Vas da se pridružite zajednici od preko 150,000 registrovanih korisnika kroz Total Materia Besplatan demo.