Sub-Liquidus Casting (SLC)

Sumário:

Sub-Liquidus Casting is one of many known semi-solid metal technologies and holds great value offering grain refinement accompanied by proper control of melt temperature and cooling rate.
Some key advantages include improved tool life and time savings through quicker solidification.

Semi-solid metal (SSM) technology is different from the conventional forming processes which uses either solid or liquid metals as the starting material. This process deals with slurries, which in principle, can be produced in any material systems where liquid and solid phases coexist over a freezing range. The SSM process has advantages over other casting processes which are associated with less porosity and shrinkage voids, lower processing temperature and shorter time, less mold erosion, faster cycle time and longer die life.

Semisolid processing consists of two or three stages. First, a globular structure within the semisolid alloy is created. Then the semisolid slurry is used either directly for applications that require slurry (rheocasting) to form a component with near-net shape or be solidified as billets for later reheating during thixocasting.

There is a wide range of (SSM) processes patented or under investigation within research and development centers worldwide.

One of them is the Sub-Liquidus Casting (SLC) process. The process was developed by THT Presses Inc., USA, and explores a phenomenon of grain refinement accompanied by proper control of melt temperature and cooling rate.



Figure 1: 400t THT press machine

In fact, the successful process cycle can only be implemented if good grain refinement is achieved in the molten alloy supplied to the machine. The grain refined material is poured into the shot sleeve at temperatures just above liquidus and cooled to a semisolid state before transfer to the mold. For practical reasons, a superheat of 5–10°C is used to compensate for heat losses during alloy transfer from the furnace to the shot sleeve.

The slurry is developed within the shot sleeve, which means that no slurry processing equipment is required outside of the casting machine (Figure 2). For aluminum alloy A356 the temperature in the chamber before injection is between 570°C and 590°C. For proper grain refinement, fine rosettes transform into globules within seconds while coarse dendrites in poorly refined alloy would require more time to transform into globular features.

Although the machine features alone do not constitute the entire process, the specific features allow its proper implementation. They include large and shallow shot diameter and short stroke as well as a unique gate plate. The shot piston and sleeve wall temperatures are controlled to extract the heat primarily through the piston and less through the shot sleeve walls. The melt is transferred to the die cavity at very low velocity of the order of 1 m/s–2 m/s through a gate plate with multiple gates.



Figure 2: The concept of sub-liquidus casting (SLC) developed by THT Presses Inc.

The advantages and requirements of sub-liquidus casting (SLC) are summarized as follows:

SLC advantages:
1) Breakway gates
2) Less sensitive to:
• Microstructural effects on properties
• Metal flow in die cavity and entrapment of bubbles
• Directional solidification
3) Less thermal input to die (~50% less)
• Longer tool life (2-5 times)
• Quicker solidification

SLC Requirements:
1) Grain refinement
2) Melt temperature (in furnace)
3) Melt cooling in shot sleeve
4) Time to develop slurry structure
5) Melt flow into die cavity



Figure 3: Typical A356 alloy SLC microstructure (x100)


References

1. S. Nafizi: Effects of grain refining and modification on the microstructural evolution of semi-solid 356 alloy, University of Quebec at Chicoutimi, April 2006, Accessed Nov 2016

2. F.Czerwinski: Magnesium Injection Molding, Springer, 2008, ISBN-13: 978-0-387-72399-0 e-ISBN-13: 978-0-387-72528-4

3. A.Forn, M.T.Baile, S.Menargues, I.Espinosa: Corrosion resistance improve by hard anodize A356 aluminium alloy by subliquidus casting, OAI, 2008

4. Sub-Liquidus Casting: Process Concept and Product Properties, ss, Accessed Nov 2016

Procurar conhecimento básico

Colocar uma frase para procurar por:

Procurar por

Texto completo
Palavras chaves

Títulos
Resumo

O banco de dados da Total Materia contém muitos milhares de fundição de materiais através de uma grande variedade de países e padrões.

Quando disponíveis, informações de propriedade completa pode ser vista de materiais incluindo a composição química, propriedades mecânicas, propriedades físicas, dados de propriedades avançadas e muito mais.

Usando a página de pesquisa avançada, é possível pesquisar por materiais por suas principais palavras descritivas detalhadas no título padrão usando a função Standard Descrição da Pesquisa Avançada.

É talvez o que você precisa para estreitar ainda mais os critérios de pesquisa usando os campos na página de pesquisa avançada por exemplo, País / Standard.

Em seguida, clique em Enviar.


Uma lista de materiais será então gerado para você escolher.


Depois de clicar em um material a partir da lista resultante, uma lista de subgrupos derivados de especificações padrão aparece.

A partir daqui é possível ver os dados de propriedades específicas para o material selecionado e também para ver os materiais semelhantes e equivalentes em nossas poderosas tabelas de referência cruzada.


Por exemplo, clicando sobre o link composição química na página subgrupo é possível ver os dados de composição química para o material.

Para você é uma oportunidade de fazer um test drive na Total Materia, nós convidamos você a participar de uma comunidade de mais de 150.000 usuários registrados através da Total Materia Free Trial.