Selective Laser Sintering (SLS) Part Two

요약:

Selective laser sintering (SLS) was one of the first additive manufacturing techniques, developed in the mid-1980s and was adapted over time to be applicable for practically all structural materials such as plastics, metals, glass, ceramics, and composites.
A key advantage of the SLS technique is that post-processing requires minimum time and therefore it can be classed an efficient option for industrial application.

Unlike other methods of 3D printing, SLS requires very little additional tooling once an object is printed, meaning that objects don't usually have to be sanded or otherwise altered once they come out of the SLS machine.

SLS doesn't require the use of additional supports to hold an object together while it is being printed. Such supports are often necessary with other 3D printing methods, such as stereolithography or fused deposition modeling, making these methods more time-consuming than SLS.

Part Recovery and Post-Processing

Selective laser sintering post-processing requires minimal time and labor, and leads to consistent results for batches of many parts.

After a print job is complete, the finished parts need to be removed from the build chamber, separated, and cleaned of excess powder. This process is typically completed manually at a cleaning station using compressed air or a media blaster.

SLS parts have a slightly rough, grainy surface finish right out of the printer similar to a medium grit sandpaper.

Post process options include:
• Polishing
• Dyeing
• Impregnation (water-proofing)
• Spray painting (individual colors)
• Shot peening

The most commonly used materials for SLS:
• Aluminum-Filled (PA12-AL)
• Carbon Fiber Filled Nylon (Windform XT)
• Flame Retardant Nylon (Duraform FR100)
• Glass-Filled Nylon (Duraform GF)
• Impact-Resistant Nylon (Duraform EX)
• Nylon (Duraform PA)
• Rubber-Like (Duraform Flex Plastic)

Advantages of SLS:
• SLS parts have good, isotropic mechanical properties, making them ideal for functional parts prototypes;
• SLS require no support, so designs with complex geometries can be easily produced;
• The manufacturing capabilities of SLS is excellent for small to medium batch production.

Disadvantages of SLS:
• Only industrial SLS systems are currently widely available, so lead times are longer than other 3D printing technologies, such as FDM and SLA;
• SLS parts have a grainy surface finish and internal porosity that may require post-processing, if a smooth surface or water tightness is required;
• Large flat surface and small holes cannot be printed accurately with SLS, as they are susceptible to warping and oversitnering.

Application

The application of selective laser sintering is based on two key advantages:

  • Production without prior preparation, because there is no need for tools that use shaping technology;
  • Possibilities of object production with complex geometrical characteristics, which can not be produced using traditional production technologies.

Selective laser sintering is a shortest path from a computer model to the real object, so what is the solution for the preparation of test samples, individualized products, tools for design technology, and even small product series. The most important application of selective laser sintering:

  • Rapid prototyping (shortened RP - „rapid prototyping“)
    - Conception models
    - Functional prototypes
  • Making tools of complex shape (shortened RT - "rapid tooling")
  • Production of small series (shortened RM - "rapid manufacturing")



Figure 1: Parts produced/manufactured by SLS process


References

1. E. Palermo August 13, 2013: What is Selective Laser Sintering?, Accessed FEB 2010;

2. Selective Laser Sintering (SLS), Accessed March 2020;

3. Selective Laser Sintering, Accessed March 2020;

4. A. B. Varotsis: Introduction to SLS 3D Printing

5. Selective Laser Sintering, Accessed March 2020;

6. Selective Laser Sintering – SLS, Accessed March 2020;

기술 자료 검색

검색할 어구를 입력하십시오:

검색 범위

본문
키워드

머릿글
요약

Total Materia는 다양한 나라와 규격에 따른 수천개의 주조 재료에 대한 정보를 포함하고 있습니다.

재질의 화학적 조성, 기계적 특성, 물리적 특성, 고급 물성 데이터 등의 전체적인 특성 정보들을 어디서든 검토하실 수 있습니다.

고금 검색 내 규격 설명 기능을 이용하여, 규격 내 재질에 설명된 키워드를 통해 재질을 검색하실 수 있습니다.

검색 범위 좀 더 줄이기를 원하신다면 국가/규격과 같은 다른 조건을 지정할 수 있습니다.

검색 버튼을 클릭합니다.


선택된 정보에 부합하는 일련의 재질이 검색됩니다.


결과 리스트에서 재질을 선택하시면, 일련의 규격 사양 소그룹이 나타납니다.

여기에서 선택한 재질의 특정 특성 데이터를 검토하실 수도 있고, 강력한 상호 참조 표를 이용하여 유사 재질이나 등가 재질을 검토하는 것 또한 가능합니다.


예를 들어, 소그룹 내 화학적 조성 링크를 클릭하시면, 재질의 화학적 조성 데이터를 검토하실 수 있습니다.

Total Materia 데이터베이스를 사용해 보실 수 있는 기회가 있습니다. 저희는 Total Materia 무료 체험을 통해 150,000명 이상의 사용자가 이용하고 있는 커뮤니티로 귀하를 초대합니다.