The LaserCusing Process

요약:

LaserCusing is a commercial selective laser melting method which as a technology are rapidly emerging as the choice technique for manufacturing low volume, high complexity components.
LaserCusing is different to the similar SLS process in that instead of sintering, the metal powder is directly fused layer by layer and at extremely high density (> 99.7%) which produces excellent mechanical properties.

The demand from industry to gain greater control of customised part manufacture using the combined strengths of computer aided design (CAD) and 3D printing methods has focused interest on additive manufacturing (AM) techniques.

Additive manufacturing (AM) techniques are a group of emerging technologies that have the ability to build 3D parts from bottom up by adding layer upon layer at a time. In this process, information of each layer is taken from a stereolithography (STL) file that is the CAD file sliced in approximated triangles and passed to a 3D printer. Parts being built by 3D printing are becoming more popular in optics industry because it's easy to build light weight components that are very durable.

Selective laser melting, also known as laser powder bed or 3D printing of metal, is a rapidly developing manufacturing technique that enables the fabrication of complex-shaped parts with intricate details. It involves an interaction of a laser beam with powder surface aiming towards achieving parts by melting and fusing of a series of powder layers on top of each other under an inert atmosphere according to a designed model. SLM is an adequate process for the fabrication of optics shutters because it uses laser spot size of 50±500 μm with layer thickness of 20±100 μm which resulted in as SLM part resolution of about 150 μm.

Among the AM methods, selective laser melting (SLM) dominates applications in the industrial and academic sectors. Compared with conventional fabrication routes, SLM offers a range of benefits. The complete melting of the metallic powder particles results in a near-100 per cent dense product without the need for component-specific tooling [3]. This results in reduced production time and maximises material utilisation. Additionally, the layer-by-layer control provides geometrical freedom, and allows the designer to focus more on the functionality of the part than on its manufacturability.

One example of a commercial SLM method is LaserCUSING. The process uses a stochastic exposure scheme based on the ‘island principle’. Each powder layer is divided into ‘islands’ that are laser-scanned, based on a random distribution. It is claimed that this strategy reduces the accumulation of residual stresses caused by steep temperature gradients. The starting material consists of single-component metallic powders generated by an atomisation process, and includes steel, aluminium, nickel-based, titanium, bronze, and precious-metal alloys.

The process

Essentially, the process consists of the following: On a special workbench that is incorporated in the machine, a thin layer of the desired metal powder is automatically evenly spread in the construction chamber. An STL file then enables the laser to only fuse those particles where material must come. Immediately after the fusing by laser, a new layer of metal powder is applied that, in turn, is locally fused to the underlying layer that has already solidified. In this way, you build up a product, layer by layer, and you are not restricted by the complexity of the geometry (see schematic diagram in Figure 1).

Thus, design a component in a CAD program and allow it to be built up in 3D, in order to obtain the end product. In fact, the computer uses special software to convert the three-dimensional file into so-called slices that are, in turn, fused by the machine in order to produce a ‘hard copy’, i.e. an end product.

Oxidation is not a problem because oxygen is not present. The components that it can manufactures using LaserCusing has a maximum size of 350 x 300 x 200 mm, and this takes place inside a construction chamber. The laser beam has a diameter of 0.2 mm and an accuracy of +/- 50 μm. The layer thicknesses can vary between 25 and 100 μm with this having a corresponding effect on the surface roughness.



Figure 1: Schematic diagram snapshot of LaserCusing. A cylindrical product with cooling ducts is built up layer by layer.

LaserCusing is essentially different from SLS because unlike sintering, the metal powder is directly fused layer by layer, so that you can actually think of this as a kind of minuscule local moulding. This produces high-density (> 99.7%) products that have excellent mechanical properties.

Products produced by LaserCusing (SLM) can also be used as a finished high-quality industrial component and for rapid tooling. The products manufactured with laser, offer a good alternative for smaller series that you have to cast or forge, thus dispensing with the many additional costs associated with constructing casting models, core boxes, the smelting of metal and the time-consuming finishing as well as NC programming.

In the light metal die-casting industry:

  • Solve temperature-related mould and mould surface defect problems
  • Hot spots avoided
  • Increased casting quality (dimensionally/material structure)
  • Reduction of cycle time
  • Increased tooling lifetime
  • Easy repair of crashed cores


References

1. V. Petrović, J. Vicente Haro, O. Jordá, J. Delgado, J. Ramón Blasco, et al.. Additive Layer Manufacturing: State of the art in industrial applications through case studies. International Journal of Production Research, Taylor, Francis, 2010, p.1., 10.1080/00207540903479786, hal-00567039;

2. K. Essa, A. Sabouri, H. Butt, F. H. Basuny, M. Ghazy, M. A. El-Sayed: Laser additive manufacturing of 3D meshes for optical applications, February 7, 2018, p: 1-8;

3. K. Buijs: Laercusing, will it make removing metal by machine and casting a thing on the past?, Stainless Steel World, December, 2 0 0 5, p.31-37;

4. Laser cusing, Accessed MAY 2019.

기술 자료 검색

검색할 어구를 입력하십시오:

검색 범위

본문
키워드

머릿글
요약

Total Materia는 다양한 나라와 규격에 따른 수천개의 주조 재료에 대한 정보를 포함하고 있습니다.

재질의 화학적 조성, 기계적 특성, 물리적 특성, 고급 물성 데이터 등의 전체적인 특성 정보들을 어디서든 검토하실 수 있습니다.

고금 검색 내 규격 설명 기능을 이용하여, 규격 내 재질에 설명된 키워드를 통해 재질을 검색하실 수 있습니다.

검색 범위 좀 더 줄이기를 원하신다면 국가/규격과 같은 다른 조건을 지정할 수 있습니다.

검색 버튼을 클릭합니다.


선택된 정보에 부합하는 일련의 재질이 검색됩니다.


결과 리스트에서 재질을 선택하시면, 일련의 규격 사양 소그룹이 나타납니다.

여기에서 선택한 재질의 특정 특성 데이터를 검토하실 수도 있고, 강력한 상호 참조 표를 이용하여 유사 재질이나 등가 재질을 검토하는 것 또한 가능합니다.


예를 들어, 소그룹 내 화학적 조성 링크를 클릭하시면, 재질의 화학적 조성 데이터를 검토하실 수 있습니다.

Total Materia 데이터베이스를 사용해 보실 수 있는 기회가 있습니다. 저희는 Total Materia 무료 체험을 통해 150,000명 이상의 사용자가 이용하고 있는 커뮤니티로 귀하를 초대합니다.