Twist Extrusion Processes of Non-Ferrous Alloys

요약:

Focus on grain refinement has continued to be a hot topic of material technology and as a known severe plastic deformation (SPD) technique, twist extrusion offers good potential.
Some key benefits of twist extrusion include being able to obtain ultra-fine grain crystalline and nano-crystalline structures and increased plasticity in the alloy.

In the recent years much attention has been paid to the development of ultra-fine grained and nanostructured materials due to their superior properties. Several severe plastic deformation (SPD) techniques have emerged in the recent years for producing ultra fine grained materials in bulk metals and alloys. Among the various SPD techniques, the Twist Extrusion process is used to produce grain refinement in bulk forms.

In comparison with ECAE, TE provides some benefits, such as the ability to extrude hollow parts and rectangular cross-sections. In addition, it is possible to produce more isotropic and homogeneous deformation, by turning the samples through 90° in each consecutive deformation or alternatively, make use of consecutive clockwise-anticlockwise twists. This feature is very important for electronic and magnetic materials. Therefore, the present work has been undertaken to develop fine grained aluminum alloys by twist extrusion process and to examine the microstructure and mechanical properties of twist extruded samples. TE can be applied for a wide range of materials such as Cu, Ti alloys, commercial purity aluminum, Al-Mg alloys, Al-Mg-Si alloys, and Al-Mg-Zn alloys.

This process uses extensive hydrostatic pressure to impose very high strain on bulk solids, producing exceptional grain refinement without introducing any significant change in overall dimensions of the sample. As the specimen is processed, it undergoes severe plastic deformation while maintaining its original cross section. The schematic sketch of twist extrusion process is shown in Figure X.

The twist extrusion principle consists in initiating intensive shear deformation by extruding a billet with rectangular cross section through a die with a twist channel. The channel shape and cross section does not change along the axis of extrusion, while the channel is twisted along this axis. The work-piece shape and cross section does not change as well, which allows repeated extrusion and thus an accumulation of plastic deformation.

The principle of twist extrusion (TE) is shown in Figure 1, in a special closed mold cavity with a helix angle β and a cross-sectional rotation angle α (the cross-section of the spiral channel is always orthogonally with the central axis and remains the unchanged same), shear plastic deformation in the metal billet is generated after twist deformation process, and a "cumulative" strain can be obtained after multi-passes twist extrusion deformation, so a new organization and performance enhancement can be acquired, too. Obviously, the twist rotation angle β and the cross-sectional rotation angle α determine the strength of the strong deformation caused by the twist extrusion (TE), and when the spiral channel length is constant, the twist angle α affects indirectly the helix angle β. Therefore, it is very important to determine and design the optimum twist angle α.



Figure 1: Schematic sketch of Twist Extrusion Process

Features of Twist Extrusion

  • The size of the terminating areas of the specimen, that is, the head and rear parts, of the billet, is much smaller under TE than under ECAE, which is especially important when doing repeated runs.
  • TE can handle profile billets including those with an axial channel.
  • TE can easily be installed on any standard extrusion equipment, by replacing a standard reduction die with a twist die.
  • TE (unlike ECAE) does not change the direction of a billet’s movement, which allows TE to be easily embedded into existing industrial lines.

Benefits of Twist Extrusion

There are currently three main benefits of Twist Extrusion:
  • Obtaining ultra-fine grain crystalline and nano-crystalline structures in bulk specimens
  • Increasing the plasticity of secondary non-ferrous metals and alloys, which allows one to significantly broaden the range of production
  • Obtaining bulk specimens by consolidating porous materials which allows one to create substantially different new compositions with unique characteristics

Applications of Twist Extrusion

  • Aerospace – Engine components (blades, discs, rings and engine cases)
  • Airframe components (tail sections, landing gear, wing supports and fasteners)
  • Automotive applications - Clamps in locking devices, fasteners in racing bikes
  • Medical devices-joint replacement (hip balls and sockets), surgical instruments, wheel chairs, etc.
  • Sport products-weight sensitive products, such as high-performance mountain bycicles, tennis rackets.
  • Food and chemical industries -Heat exchangers, tanks, process vessels, etc.


References

1. C. Sakthivel, V. S. Senthil kumar: Determination of hardness and microstructure during cross plastic flow evaluation on twist extrusion processes, IJESMR, International Journal of Engineering Sciences & Management Research, ICAMS: March 2017, ISSN 2349-6193, Accessed April 2018;

2. B. Srinivas, Ch. Srinivasu, Banda Mahesh, Md Aqheel: A Review on Severe Plastic Deformation, Advanced Materials Manufacturing & Characterization Vol 3 Issue 1 (2013), p.291-296, Accessed April 2018;

3. M.Greger: Advanced Forming Technologies, Subject number: 633-0807, VŠB – Technical University of Ostrava Faculty of Metallurgy and Materials Engineering Department of Materials Forming, Ostrava 2016, Accessed April 2018;

4. Y. Li, Y-zhi Li: Densification Optimized Design for CuZnAl Sintered Powders by Different Twist Angle During Twist Extrusion Process by Numerical Method, 2017 3rd International Conference on Electronic Information Technology and Intellectualization (ICEITI 2017), p.459-464, ISBN: 978-1-60595-512-4;

5. Twist Extrusion, Accesseed April 2018.

기술 자료 검색

검색할 어구를 입력하십시오:

검색 범위

본문
키워드

머릿글
요약

Total Materia는 다양한 나라와 규격에 따른 금속학 이미지에 대한 정보를 포함하고 있습니다.

메뉴 표시줄에 특별히 디자인된 금속학 탭을 이용하여, 금속학 데이터가 포함된 관심 재질을 리스트에서 선택하실 수 있습니다.

또한 금속학 데이터는 표준 빠른 검색을 통해 찾을 수 있으며 규격 내 소그룹 페이지를 통해 이용 가능한 관련 자료들이 표시됩니다.

재질명을 '재질'창에 입력하신 후 규격을 알고 계신다면 규격을 선택하고 '검색' 버튼을 클릭합니다.


미세 구조에 대한 일반적인 정보가 관련 관심 재질의 화학 조성과 함께 출력됩니다.


구조의 세부 범위를 보여주는 여러 배율에서의 이미지가 가능하다면 제공됩니다.

다양한 조건을 선택할 수 있으며, '조건 선택' 메뉴를 사용하여 다양한 공정 및 열처리에 따른 금속학 이미지를 보여줍니다.



Total Materia 데이터베이스를 사용해 보실 수 있는 기회가 있습니다. 저희는 Total Materia 무료 체험을 통해 150,000명 이상의 사용자가 이용하고 있는 커뮤니티로 귀하를 초대합니다.