Investment Casting of Titanium Alloys

요약:

Investment casting is the proven casting method of choice to ensure the highest possible quality of end product by using a shell system to help control the surface finish and detailing of the casting.
There are a wide range of titanium cast alloys to choose from however depending the application it important to consider the alloy choice carefully.

The main difficulty with casting titanium alloys is their reactivity with common elements in air like oxygen and nitrogen.

The investment casting process is the only metal casting process that can produce complicated shapes in high temperature alloys to a very high quality standard.

The shell system and the shell technology, including the control, maintenance, composition and operation, have the biggest effect on the quality of the casting. The shell system comprises a face coat system and a back-up system to produce the shell mould. Apart from the quality of the wax pattern, the composition of the slurry and the stucco’s used for the shell manufacture as well as the physical properties of the slurries, controls the surface finish of the casting and the definition of the features of the casting.

Titanium castings are successfully being implemented as cost-effective alternatives to forged and wrought products for high performance and increasingly cost-sensitive applications such as military and commercial air craft airframe structures. In some instances, these castings have been produced for half the cost of comparable forged and machined parts. For most of the last two decades, investment casting has been the preffered processing route for sophisticated titanium castings.



Table 1: Examples of cast titanium alloys



Table 2: Typical mechanical properties of cast titanium alloys



Figure 1: Various investment cast parts for applications in the low temperature section of a gas turbine engine

The most widely used titanium alloy nowadays is Ti-6Al-4V. This alloy possesses an excellent combination of strength, toughness and good corrosion resistance and finds application in aerospace, pressure vessels, aircraft compressor blades and discs, surgical implants etc. Aluminum stabilizes the hexagonal close-packed (hcp) α phase, and vanadium, being body-centered cubic (bcc), stabilizes the β phase. Because of high melting point and excessive reactivity of the melt with crucibles, melting and pouring of titanium alloys have to be performed under vacuum. Due to the high cost of titanium, the use of net-shape or near-net-shape technologies receive an increasing interest considering the large cost saving potential of this technology in manufacturing parts of complex shapes. Precision (investment) casting is by far the most fully developed net-shape technology compared to powder metallurgy, superplastic forming and precision forging. Production of precision castings of titanium alloys was considerably increased during last years due to significant cost savings compared with complicated process of machining. When Ti-6Al-4V is slowly cooled from the β region, α begins to form below the β transus temperature that is about 980°C. The kinetics of β→α transformation upon cooling strongly influences properties of this alloy. Contrary to wrought material, however, the possibilities to optimize the properties via the microstructural control are limited for cast parts to purely heat treatments. For many alloys mechanical properties of castings are inherently lower than those of wrought alloys. Nevertheless, heat treatment of titanium castings yields mechanical properties comparable, and often superior, to those of wrought products.


References

1. T.Branscomb: Shell materials and casting methods for casting titanium with minimum alpha case, Accessed June 2017

2. D.Mudaly: Titanium and Magnesium Investment Casting Technology for Foundries, Accessed June 2017;

3. H.-P. Nicolai, Chr.Liesner: Investment casting of titanium, Titanium and titanium alloys: fundamentals and applications, edited by C.Leyens, M.Peters, 2003, Wiley-VCH, DOI: 10.1002/3527602119.ch9;

4. M. T. Jovanović, I. Bobić, Z. Mišković, S. Zec: Precision cast Ti based alloys-microstructure and mechanical properties, MJoM, Vol 15, (1), 2009, p. 53-69.

기술 자료 검색

검색할 어구를 입력하십시오:

검색 범위

본문
키워드

머릿글
요약

Total Materia는 다양한 나라와 규격에 따른 수천개의 주조 재료에 대한 정보를 포함하고 있습니다.

재질의 화학적 조성, 기계적 특성, 물리적 특성, 고급 물성 데이터 등의 전체적인 특성 정보들을 어디서든 검토하실 수 있습니다.

고금 검색 내 규격 설명 기능을 이용하여, 규격 내 재질에 설명된 키워드를 통해 재질을 검색하실 수 있습니다.

검색 범위 좀 더 줄이기를 원하신다면 국가/규격과 같은 다른 조건을 지정할 수 있습니다.

검색 버튼을 클릭합니다.


선택된 정보에 부합하는 일련의 재질이 검색됩니다.


결과 리스트에서 재질을 선택하시면, 일련의 규격 사양 소그룹이 나타납니다.

여기에서 선택한 재질의 특정 특성 데이터를 검토하실 수도 있고, 강력한 상호 참조 표를 이용하여 유사 재질이나 등가 재질을 검토하는 것 또한 가능합니다.


예를 들어, 소그룹 내 화학적 조성 링크를 클릭하시면, 재질의 화학적 조성 데이터를 검토하실 수 있습니다.

Total Materia 데이터베이스를 사용해 보실 수 있는 기회가 있습니다. 저희는 Total Materia 무료 체험을 통해 150,000명 이상의 사용자가 이용하고 있는 커뮤니티로 귀하를 초대합니다.