Superplasticity of Aluminum Alloys: Part One

요약:

It is known that superplasticity refers to the ability of a material to demonstrate under tensile tests very high uniform deformation more than several hundreds percents without visible necking. There are two basic requirements in order to achieve superplastic flow in a polycrystalline material. First, the material must have a very small and stable grain size less than 10 μm. Second, superplasticity is achieved only at relatively high temperatures above 0.5Tm (where Tm is the absolute melting temperature) because superplasticity is diffusion-controlled process.

It is known that superplasticity refers to the ability of a material to demonstrate under tensile tests very high uniform deformation more than several hundreds percents without visible necking. There are two basic requirements in order to achieve superplastic flow in a polycrystalline material. First, the material must have a very small and stable grain size less than 10 μm. Second, superplasticity is achieved only at relatively high temperatures above 0.5Tm (where Tm is the absolute melting temperature) because superplasticity is diffusion-controlled process.

The first aluminium alloys with super plastic properties had eutectoidal or eutectic composition, e. g. AlCu33 alloy. They were not applied in practice due to unsuitable mechanical properties, though they possessed good plasticity. In 1970s, super plastic alloys with compositions and mechanical properties similar to those of ordinary aluminium alloys, were discovered. Since then, the development of those materials has an upward trend. Some superplastic alloys are already industrially produced and used in practice. Among the most known and useful alloys are the AA2004 (Al-Cu-Zr), AA7475 (AlZnMgCu), AA5083 (AlMgMn), and AlLiX (Table 1.).



Table 1: Working conditions (working temperature T, strain rate), and the highest elongations e, for some aluminium alloys, in comparison with the ZnAl22 alloy



Figure 1: Plasticity of the AlZnMgCu alloy at various working temperatures and strain rate 7.5x10-4 s-1

Superplastic sheet metals enable the fabrication of complex-shaped products with a single working operation using relatively inexpensive tools.

Application of superplastic materials highly reduces the manufacturing costs due to reduced consumption of energy and materials, by reducing unnecessary joining of single sections, and by using one single tool which can be made of undemanding, cheap material. Savings in tools represent up to 90 % in comparison with manufacturing equally complex products of ordinary materials. Application of superplastic materials is suitable for making complex items in small and medium series of 50 to 10 000 pieces. Bigger series are at present not yet economic due to too long shaping times. Aluminium superplastic alloys are used for manufacturing aircraft components, components of car bodies, for housing, components of various apparatuses and musical instruments, and components in building, like linings of buildings, and for decoration purposes.

High-strength AlZnMgCu, AlCuZr, and AlLiX alloys are mainly used in aircraft industry; AlMgMn alloys are more generally used for road and rail vehicles, and in civil engineering. Further development of superplastic materials will be directed towards cheaper manufacturing of those materials and to rationalisation of superplastic working. Further efforts to improve the plasticity are not needed. The plasticity, possessed by such present aluminium materials, already corresponds to the demands of superplastic working.


References

1. R.K.Islamgaliev, N.F.Yunusova, M.A.Nikitina, K.M.Nesterov: The effect of alloying elements on superplasticity in an ultrafine-grained aluminum alloy, Rev. Adv. Mater. Sci., 25, 2010, p.241-248;

2. A.Smolej, E.Slaček, R.Turk: State and development of some wrought aluminium alloys for special and general applications, METALURGIJA 41, 3, 2002, p.149-155, ISSN 0543-5846;

3. A. Smolej, B. Skaza, E. Slaček: Superplasticity of the 5083 aluminium alloy with the addition of scandium, Materiali in tehnologije, Materials and technology 43, 6, 2009, p.299–302, ISSN 1580-2949;

기술 자료 검색

검색할 어구를 입력하십시오:

검색 범위

본문
키워드

머릿글
요약

Total Materia는 다양한 나라와 규격에 따른 수천개의 알루미늄 재질에 대한 정보를 포함하고 있습니다.

재질의 화학적 조성, 기계적 특성, 물리적 특성, 고급 물성 데이터 등의 전체적인 특성 정보들을 어디서든 검토하실 수 있습니다.

고급 검색을 이용하여, 검색 조건의 재질 리스트에서 '알루미늄'을 선택합니다. 검색 범위 좀 더 줄이기를 원하신다면 국가/규격과 같은 다른 조건을 지정할 수 있습니다.

검색 버튼을 클릭합니다.


선택된 정보에 부합하는 일련의 재질이 검색됩니다.


결과 리스트에서 재질을 선택하시면, 일련의 규격 사양 소그룹이 나타납니다.

여기에서 선택한 재질의 특정 특성 데이터를 검토하실 수도 있고, 강력한 상호 참조 표를 이용하여 유사 재질이나 등가 재질을 검토하는 것 또한 가능합니다.


자세한 특성 데이터를 보시려면 특성 데이터 링크를 클릭하세요.




Total Materia 데이터베이스를 사용해 보실 수 있는 기회가 있습니다. 저희는 Total Materia 무료 체험을 통해 150,000명 이상의 사용자가 이용하고 있는 커뮤니티로 귀하를 초대합니다.