Pulsed Electric Current Sintering (PECS)

요약:

Pulsed Electric Current Sintering is a relatively new technique which in essence is process which can create near full density contacts at relatively low temperatures.
The main advantages of PECS is that because of these minimal thermal conditions the microstructure of the material is preserved with minimal grain growth.

Pulsed electric current sintering (PECS) also known as spark plasma sintering (SPS) or field assisted sintering (FAST) is a relatively new innovative technique for the consolidation of fine or nanocrystalline powders and has received much attention in the recent years because of its many advantages compared with other sintering/bonding methods such as the hot pressing and hot isostatic pressing (HIP) processes.

According to Tokita, the history of the technology, related to the process in question, started in the 1930s in the USA where the first resistance heating method was patented. On the other hand, SPS was originally invented in Japan in 1962 as ‘spark sintering’ according to Inoue. However, the technology was commercialized in the late 1980s, and various companies started to manufacture SPS equipment based on the original technique.

Several different materials and material combinations are suitable for PECS, e.g. metals, metal composites, oxides, nitrates, carbides, and polymers are widely produced. The method is getting more publicity when producing functionally graded materials (FGM), intermetallic compounds, semiconductors, ferroelectric materials, electroceramics, fiber reinforced materials, laminates as well as nanocrystalline materials and -composites. Also produced by PECS, to some extent, are transparent materials, porous materials, amorphous alloys, shape memory alloys and superconductors. This method has also been shown to be suitable for other materials, which are difficult to prepare conventionally.

As mentioned above the pulsed electric current sintering (PECS) is a relatively new technique that can produce nearly full density compacts in short times and lower temperatures, which can keep grain growth to a minimum. Direct current can be constant or pulsing, typically below 1000 A, with low applied voltages, normally below 25 V. Chamber atmosphere, typically inert gas such as Ar, can be varied to reduce corrosion during sintering; H is used to reduce oxides on the powders surfaces.88 Graphite is mainly used for dies and punches due to its tolerance of rapid heating, but ceramics or steels can also be used.

Applied pressures during PECS are typically below 100 MPa, due to the mechanical strength of the graphite used. The combination of the electric current and the applied pressure can drastically reduce the time and temperature needed to sinter many materials systems. Reduction in sintering time compared to hot pressing or hot isostatic pressing is seen in Si3N4, Al2O3-Y3Al5O12, Fe0.91Mn0.09Si2, Si2N2O3-CaO-Al2O3, Y2O3-ZrO2-ZrB2, Cr2AlC, and hydroxyapatite powder.

Lower sintering temperatures have also been observed in Si3N4, Al2O3-Y3Al5O12, Si2N2O3-CaO-Al2O3, Y2O3-ZrO2-ZrB2, ZrB2-MoSi2, and Nb/Nb5Si3. Additionally, compared to hot pressing or hot isostatic pressing, PECS can provide finer microstructures, more homogeneous microstructure, higher density, higher densification rate, improved mechanical properties improved electrical properties, and improved bioactivity. The improved properties seen when PECS is used make it an ideal processing route for the production of new materials for KEPs.

It must also be pointed out that in the PECS process, a pulse of electric current flows directly through the sintered/bonded materials, yielding a very high heating efficiency. In general, a heating rate up to 1500°C/min can be achieved using the PECS process, compared with 50-80°C/min for the conventional sintering/bonding process. In the PECS process, the heating rate is an important factor. It affects the properties of the sintered/bonded specimens.

As concluded in the paper of A.Wang and O.Ohashi for the same bonding temperature, the mesh temperature under rapid heating was higher than with slow heating. Strong bonding can be achieved by rapid heating due to the concentration of heat at and near the mesh the deformation of the rod was reduced.

A schematic picture of a PECS unit is presented in Figure 1.



Figure 1: A schematic representation of a PECS unit

기술 자료 검색

검색할 어구를 입력하십시오:

검색 범위

본문
키워드

머릿글
요약

Total Materia는 다양한 나라와 규격에 따른 금속학 이미지에 대한 정보를 포함하고 있습니다.

메뉴 표시줄에 특별히 디자인된 금속학 탭을 이용하여, 금속학 데이터가 포함된 관심 재질을 리스트에서 선택하실 수 있습니다.

또한 금속학 데이터는 표준 빠른 검색을 통해 찾을 수 있으며 규격 내 소그룹 페이지를 통해 이용 가능한 관련 자료들이 표시됩니다.

재질명을 '재질'창에 입력하신 후 규격을 알고 계신다면 규격을 선택하고 '검색' 버튼을 클릭합니다.


미세 구조에 대한 일반적인 정보가 관련 관심 재질의 화학 조성과 함께 출력됩니다.


구조의 세부 범위를 보여주는 여러 배율에서의 이미지가 가능하다면 제공됩니다.

다양한 조건을 선택할 수 있으며, '조건 선택' 메뉴를 사용하여 다양한 공정 및 열처리에 따른 금속학 이미지를 보여줍니다.



Total Materia 데이터베이스를 사용해 보실 수 있는 기회가 있습니다. 저희는 Total Materia 무료 체험을 통해 150,000명 이상의 사용자가 이용하고 있는 커뮤니티로 귀하를 초대합니다.