The High Pressure Die Casting Process

요약:

HPDC is an efficient componentry manufacturing method for the production of various product forms with extremely quick casting possibilities coupled with a high pressure injection process.
The four main metal groups used with this technology are aluminum, zinc, magnesium and copper-base alloys.

High pressure die casting (HPDC) is a high volume manufacturing process for components of different sizes and shapes and there are some specifics of the process which can be discussed. The casting of a molten alloy into a mold is complete within several milliseconds. A significant quenching effect with high production rates is therefore possible. The application of high-pressure enables good contact between molten alloy and die wall that enables: the increase in cooling rate, the increase in heat flow and heat transfer coefficient at the die-melt interface as well as the formation of a net shape casting.

Casting defects such as shrink holes which generate by the shrinkage during solidification are reduced. Components with complicated shapes are produced directly from a liquid state even for a molten alloy with high viscosity. By taking these facts into account, it is expected that much larger shapes and dimensions can be formed in various alloy systems by the high pressure die casting process. The characteristics of the HPDC process, are high velocity of melt during filling the die and high solidification rate of the component. Such circumstances demands a more sophisticated approach to the study of phenomena during the HPDC process.

HPDC is a fully automatic, large volume, high productivity process for the production of complex, thin walled near net shape castings, with part weights ranging from a few grams to more than 15kg. It has traditionally been utilized in the production of housings etc., but this has changed. Presently, feasible products are automotive front end structures and instrument panels in magnesium alloys and B-pillars in aluminum alloys.

The four principal metals, with different alloy compositions, that are commonly hot- or cold chamber die cast are aluminum, zinc, magnesium and copper-base alloys. The injection system in the hot chamber machines is immersed into the melt and the pressure is therefore limited. The system also degrades quickly if exposed to aluminum. In the cold chamber process, the metal reservoir is separated from the injection system. The metal is filled into a steel shot sleeve, as shown in Figure 1, (magnesium is automatically metered). The shot sleeve is typically 200-300°C.



Figure 1: Illustration of cold chamber high pressure die casting

A production cycle in HPDC consists of:
1) Metering of metal into the shot sleeve
2) Plunger movement
3) Rapid die filling. The steel die, typically 200-300°C, dissipates the latent heat
4) During solidification the casting is pressurized hydraulically by the plunger to feed the solidification shrinkage. Locking forces up to 4000 tons are commercially available to withstand the large pressures
5) The die is opened
6) The casting is then ejected. The hydraulic energy is provided by a computerized system that permits control of metal position, velocity and plunger acceleration to optimize the flow and the pressure during filling and solidification.

The die cavity may be evacuated to reduce air entrapment during die filling, and high integrity die castings can therefore be produced by utilizing vacuum systems. Alternatively semi-solid metalworking (SSM) can be used to reduce turbulence. A short die filling time and thin walls results in high cooling rates, (typically 100-1000Ks-1). This promotes a fine grain size which provides decent mechanical properties. However, the properties can be improved by intimate interrelationship between product and process design through amended metal handling, accurate process control, and optimized runner and die design. The capacity of the injection system is described by the so called P-Q2 diagram which is supplied with the HPDC machine. It has been deduced that the pressure, P, is proportional to the square of the flow rate, Q.

The die characteristics can be described by the equation P=(kdie/Ga)Q2. The working conditions are determined from the intersection of the die line with the machine line in the P-Q2 diagram. Furthermore, suitable timing, good dimensional stability and correct assessment of the fluid and heat flow are prerequisites for better castings. Apparently minor factors such as the amount of lubrication, its composition and application procedures can turn out to be of utmost importance for the final casting characteristics.

기술 자료 검색

검색할 어구를 입력하십시오:

검색 범위

본문
키워드

머릿글
요약

Total Materia는 다양한 나라와 규격에 따른 수천개의 알루미늄 재질에 대한 정보를 포함하고 있습니다.

재질의 화학적 조성, 기계적 특성, 물리적 특성, 고급 물성 데이터 등의 전체적인 특성 정보들을 어디서든 검토하실 수 있습니다.

고급 검색을 이용하여, 검색 조건의 재질 리스트에서 '알루미늄'을 선택합니다. 검색 범위 좀 더 줄이기를 원하신다면 국가/규격과 같은 다른 조건을 지정할 수 있습니다.

검색 버튼을 클릭합니다.


선택된 정보에 부합하는 일련의 재질이 검색됩니다.


결과 리스트에서 재질을 선택하시면, 일련의 규격 사양 소그룹이 나타납니다.

여기에서 선택한 재질의 특정 특성 데이터를 검토하실 수도 있고, 강력한 상호 참조 표를 이용하여 유사 재질이나 등가 재질을 검토하는 것 또한 가능합니다.


자세한 특성 데이터를 보시려면 특성 데이터 링크를 클릭하세요.




Total Materia 데이터베이스를 사용해 보실 수 있는 기회가 있습니다. 저희는 Total Materia 무료 체험을 통해 150,000명 이상의 사용자가 이용하고 있는 커뮤니티로 귀하를 초대합니다.