The Rheo Casting Process


Defects and anomalies are an everyday challenge within the framework of foundry technologies. As demand for castings with very specialized applications rises, the issue of quality becomes more important.
The Rheo Casting process involves using slurry in a semi solid state with the amount of benefits directly linked to the fraction solid at the time of casting. Advantages can include a reduction in shrinkage and significantly reduced latent heat.

Within the framework of foundry technologies the presence of defects, anomalies and imperfections in the final product are an ever present reality. This cohabitation between process and quality issues is becoming more and more problematical because of the request of increased performance in castings, in order to produce a large series of components which often have very critical applications.

Voids or cavities are generated within a casting during solidification, caused by volume contraction, by poor feeding systems and/or gas (prevalently hydrogen) development. Generally, interdendritic shrinkage pores, inclusions, secondary dendrite arm spacing are privileged crack initiation sites, independently of the loading conditions. These parameters directly affect the mechanical performances of the alloy leading to a reduced strength and ductile properties, irregular crack development and in extreme conditions can cause the materials failure.

SSM-processing presents an alternative manufacturing route for aerospace, military and especially automotive components. Suspension parts, engine brackets and fuel rails for the automotive industry are being produced in Europe, whereas examples from the USA include mechanical parts for snowmobiles and mountain bikes. Asia has focused more on the production of electronic components such as electrical housing components and notebook cases with emphasis on magnesium alloys.

Rheocasting involves preparation of SSM slurry directly from the liquid alloy, followed by a forming process such as High Pressure Die Casting (HPDC). With “Rheo” processes the alloy is cooled into a semi-solid state and then is introduced into a die without the presence of an intermediate solidification step; semi-solid slurry with non-dendritic solid particles is produced from a fully liquid regular alloy. It is cooled to obtain the desired fraction solid and then it is cast into a part. Component shaping directly from SSM slurries is inherently attractive due to its characteristics, such as overall efficiency in production and energy management.

A critical advantage of rheocasting is the ability to cast the metal at a wide range of fraction solids. The majority of the process advantages of using nondendritic, semi-solid alloys are dependent on the amount of solid at the time of casting. Reduction of shrinkage, a decreased amount of latent heat, and the magnitude of viscosity are dependent upon and increase of the percentage of solid in the alloy.

However, as the fraction solid increases, semi-solid casting begins to deviate from conventional die casting processes. For the higher fraction solid material, a more powerful shot end is required on the die cast machine because of the much higher viscosity of the alloy. Additionally, the stroke of the piston is usually longer to accommodate the larger opening in the cold chamber. Casting cycle time is therefore shorter with high fraction solid casting, but more costly changes are required for the die casting machine to handle the more viscous material.

The Figures 1 and 2 present the schematic overview of rheo casting process and microstructure of rheocast A356 alloy.

Figure 1: Rheo casting process

Figure 2: Microstructure of rheocast A356 alloy

기술 자료 검색

검색할 어구를 입력하십시오:

검색 범위



Total Materia는 다양한 나라와 규격에 따른 금속학 이미지에 대한 정보를 포함하고 있습니다.

메뉴 표시줄에 특별히 디자인된 금속학 탭을 이용하여, 금속학 데이터가 포함된 관심 재질을 리스트에서 선택하실 수 있습니다.

또한 금속학 데이터는 표준 빠른 검색을 통해 찾을 수 있으며 규격 내 소그룹 페이지를 통해 이용 가능한 관련 자료들이 표시됩니다.

재질명을 '재질'창에 입력하신 후 규격을 알고 계신다면 규격을 선택하고 '검색' 버튼을 클릭합니다.

미세 구조에 대한 일반적인 정보가 관련 관심 재질의 화학 조성과 함께 출력됩니다.

구조의 세부 범위를 보여주는 여러 배율에서의 이미지가 가능하다면 제공됩니다.

다양한 조건을 선택할 수 있으며, '조건 선택' 메뉴를 사용하여 다양한 공정 및 열처리에 따른 금속학 이미지를 보여줍니다.

Total Materia 데이터베이스를 사용해 보실 수 있는 기회가 있습니다. 저희는 Total Materia 무료 체험을 통해 150,000명 이상의 사용자가 이용하고 있는 커뮤니티로 귀하를 초대합니다.