Ultrasonic Welding of Non-Ferrous Metals: Part Two

요약:

Ultrasonic metal welding is local and limited to the shear forces and displacement of intermediate layers.
A longer welding time results in a more even welded connection, higher yield limit and higher fracture strengths.

During ultrasonic metal welding, a complex process is triggered involving static forces, oscillating shearing forces and a moderate temperature increase in the welding area. The magnitude of these factors depends on the thickness of the workpieces, their surface structure, and their mechanical properties.

The workpieces are placed between a fixed machine part, i.e. the anvil, and the sonotrode, which oscillates horizontally during the welding process at high frequency (usually 20 or 35 or 40 kHz) (figure 1).

The most commonly used frequency of oscillation (working frequency) is 20 kHz. This frequency is above that audible to the human ear and also permits the best possible use of energy. For welding processes which require only a small amount of energy, a working frequency of 35 or 40 kHz may be used.

The static pressure is introduced at right angles to the welding interface. Here, the pressure force is superimposed by the high-frequency oscillating shearing force. As long as the forces inside the workpieces are below the limit of linear elasticity, the pieces will not deform. If forces surpass a given threshold value, local material deformation will soon take place.

These shearing forces, at high frequency, break down contamination, remove it and produce a bond between pure metal interface. The further oscillation makes the interface deformation grow until a large welding area has been produced. At the same time, there is an atomic diffusion in the contact area and the metal re-crystallizes into a fine grain structure having the properties of a cold-worked metal (figure 1).

Ultrasonic metal welding is local and limited to the shear forces and displacement of intermediate layers. However, a fusion does not take place if the pressure force, the amplitude and the welding time have been properly adjusted. Microscopic analyses using optical and electronic microscopes make re-crystallization, diffusion and other metallurgical phenomena evident. However, they provide no evidence of fusion (melted interface). The use of highly sensitive thermal sensing devices in the intermediate layers shows in an initial quick rise in temperature with a steady temperature drop afterwards.

Ultrasonic metal welding is not characterized by superficial adhesion or glued bonds. It is proven that the bonds are solid, homogeneous and long lasting joints. If, for example, a thin aluminum sheet is ultrasonically welded to a thin copper sheet, it can easily be ascertained that after a certain period of weld time, copper particles appear on the back side of the aluminum sheet. At the same time, aluminum particles appear on the back side of the copper sheet. This shows that the materials have penetrated each other -- a process which is called diffusion. This process takes place within fractions of a second.



Figure 1: Ultrasonic metal welding mechanism

The characteristics of aluminum and copper plate specimens welded by the ultrasonic method were studied. It is shown that plates of various thicknesses can be welded with large welding areas and high welding seams strengths independently of the welding positions and directions. Aluminum-copper and copper-copper plate specimens were welded with the strength of welding seams almost equal to the specimen strength.

A longer welding time results in a more even welded connection, higher yield limit and higher fracture strengths. Accordingly the metal fatigue characteristics of the welded specimens with longer welding time are improved. The research results were used for aluminum and copper plate welding. Using ultrasonic energy it is possible to weld several elements at one time.

Ultrasonics complex vibrations with two- or three-dimensional vibration locus are effective for various applications. Complex vibration systems using a longitudinal-torsional vibration converter with diagonally slitted parts and a complex transverse vibration source driven by multiple longitudinal driving systems have been proposed and studied. Applications of the complex vibration systems include ultrasonic direct welding of LSI, semiconductor chips without any adhesive and solder, ultrasonic seam welding of aluminum, copper plates for heat exchanger or heat sink, ultrasonic welding of thick metal specimens such as an automobile body, etc.

Various high-frequency and complex-vibration systems have been proposed and shown effective for various applications. Using the complex vibration welding system, the welded area and weld strength become larger and more uniform than those obtained by a conventional linear vibration system. Thick metal plate specimens can be welded continuously with uniform weld strength independent to welding positions and directions using the complex vibration systems. Furthermore, the converters are applied to ultrasonic motors.

Complex vibration systems are effective for various high power applications of ultrasonics especially those in ultrasonic metal welding, ultrasonic wire bonding, various packaging in microelectronics by ultrasonic vibration, ultrasonic plastic welding, various ultrasonic machining and is also applicable to ultrasonic motors. Using the complex vibration ultrasonic welding system, the welded area and weld strength become larger and more uniform than those obtained by a conventional linear vibration welding system. Large capacity complex vibration sources with many transducers can be constructed using longitudinal to transverse converters.

기술 자료 검색

검색할 어구를 입력하십시오:

검색 범위

본문
키워드

머릿글
요약

이 문서는 전체 문서 중 일부분입니다. 이 주제에 대해 더 읽고 싶으시면 아래 링크를 클릭하시면 됩니다.

Total Materia는 용접용으로 적합한 다양한 국가와 규격 내 수천개의 재질에 대한 정보를 포함하고 있습니다.

재질의 화학적 조성, 기계적 특성, 물리적 특성, 탄소 등가 데이터와 용접용으로 재질 이용 시 필요한 정보 등의 전체적인 특성 정보들을 어디서든 검토하실 수 있습니다.

고급 검색을 이용하여, 검색 조건의 재질 리스트에서 '용접 필러 재료'를 선택합니다. 검색 범위 좀 더 줄이기를 원하신다면 국가/규격과 같은 다른 조건을 지정할 수 있습니다.

검색 버튼을 클릭합니다.


선택된 정보에 부합하는 일련의 재질이 검색됩니다.


결과 리스트에서 재질을 선택하시면, 일련의 규격 사양 소그룹이 나타납니다.

여기에서 선택한 재질의 특정 특성 데이터를 검토하실 수도 있고, 강력한 상호 참조 표를 이용하여 유사 재질이나 등가 재질을 검토하는 것 또한 가능합니다.


자세한 특성 데이터를 보시려면 특성 데이터 링크를 클릭하세요.


Total Materia 데이터베이스를 사용해 보실 수 있는 기회가 있습니다. 저희는 Total Materia 무료 체험을 통해 150,000명 이상의 사용자가 이용하고 있는 커뮤니티로 귀하를 초대합니다.