Magnesium Alloy and Temper Designations

概要:

Magnesium and magnesium alloys are used in a wide variety of structural applications include automotive, industrial, materials-handling, commercial and aerospace equipment. The automotive applications include clutch and brake pedal support brackets, steering column lock housings, and manual transmissions housings. In industrial machinery magnesium alloys are used for parts that operate at high speeds and thus must be lightweight to minimize inertial forces...

Application, Alloy and Temper Designation

Magnesium and magnesium alloys are used in a wide variety of structural applications include automotive, industrial, materials-handling, commercial and aerospace equipment.

The automotive applications include clutch and brake pedal support brackets, steering column lock housings, and manual transmissions housings. In industrial machinery magnesium alloys are used for parts that operate at high speeds and thus must be lightweight to minimize inertial forces. Commercial applications include hand-held tools, luggage, computer housings, and ladders. Magnesium alloys are valuable for aerospace applications because they are lightweight and exhibit good strength and stiffness at both room and elevated temperatures.

Magnesium is also applied in various nonstructural applications. It is used as an alloying element in alloys of aluminium, zinc, lead, and other nonferrous metals. It is used as an oxygen scavenger and desulfurizer in the manufacture of nickel and copper alloys, as a desulfurizer in the iron and steel industry; and as a reducing agent in the production of beryllium and titanium. Gray iron foundries use magnesium and magnesium-containing alloys as ladle addition agents introduced just before the casting is poured. Magnesium is also being used in pyrotechnics.

Designation for alloys shall consists of not more than two letters representing the alloying elements specified in the greatest amount, arranged in order of decreasing percentages, or in alphabetical order if equal percentages, followed by the respective percentages rounded off to whole numbers and a serial letter. The full name of the base metals precedes the designation, but it is omitted for brevity when the base metal being referred to is obvious.

A standard system of alloy and temper designations, according to ASTM B 275, is explained in the table bellow.

First part Second part Third part Fourth part
Indicates the two principal alloying elements Indicates the amounts of the two principal alloying elements Distinguishes between different alloys with the same percentages of the two principal alloying elements Indicates condition (temper)
Consists of two code letters representing the two main alloying elements arranged in order of decreasing percentage (or alphabetically if percentages are equal) Consists of two numbers corresponding to rounded-off percentages of the two main alloying elements and arranged in same order as alloy designations in first part Consists of a letter of the alphabet assigned in order as compositions become standard Consists of a letter followed by a number (separated from the third part of the designation by a hyphen)
A-aluminum
B-bismuth
C-copper
D-cadmium
E-rare earth
F-iron
G-magnesium
H-thorium
K-zirconium
L-lithium
M-manganese
N-nickel
P-lead
Q-silver
R-chromium
S-silicon
T-tin
W-yttrium
Y-antimony
Z-zinc
Whole numbers Letters of alphabet except I and O F-as fabricated
O-as annealed
H10 and H11- slightly strain hardened
H23,H24 and H26- strain hardened and partially annealed
T4-solution heat treated
T5-artificially aged only
T6-solution heat treated and artificially aged
T8-solution heat treated, cold worked and artificially aged

As an example of this designation system, consider magnesium alloy AZ81A-T4.

The first part of the designation, AZ, signifies that aluminium and zinc are the two principal alloying elements.

The second part of the designation, 81, gives the rounded-off percentages of aluminium and zinc (8 and 1, respectively).

The third part, A, indicates that it is the fifth alloy standardized with 8% Al and 1% Zn as the principal alloying additions.

The fourth part, T4, denotes that the alloy is solution heat-treated.

ナレッジベース検索

検索したい語句を入力:

検索方法

全文一致
キーワード

前方一致
要約

Total Materiaデータベースで金属の規格、現在の状況、材料の定義内容を見るには一度クリックするだけで探せます。

Total Materia規格リストではで数秒以内に関連する材料特性詳細を探し同等材料の検索が可能になります。

まず、メニューバーの規格リストボタンをクリックします。


規格を選択するか規格番号を入力するだけで3万以上の規格が登録されている多言語データベースから直ちに結果を見る事が出来ます。

例えば、ポップアップからUNI規格を選ぶとその規格の金属材料全てを見る事ができます。


結果のリストは1400材料UNI金属材料規格より構成され、それらの情報としては: 規格の説明、最終発行年、現在の状況(有効か、入れ替えなど)で対応する規格により定義される材料のホットリンクを提供しております。


材料のホットリンクををクリックするだけで選ばれた規格により定義される材料のリストが表示されます。


このリストから特性の詳細、各々の材料の同等材料をが分かります。


Total Materiaデータベースをあなたにテスト評価を頂くために15万人以上の方が登録されている無料お試しコミュニティ-へ御招待致します。