深拉伸用钢:第一部分
非铁合金的热机械处理(TMT):第一部分
DataPLUS 模块提供上万种金属材料和非金属材料的腐蚀数据、焊接性能、尺寸与公差信息以及涂层信息。 点击这里了解更多。
Overview of Total Materia database 2022 年 1月 12日
Overview of Total Materia database 2022 年 1月 13日
在使用Total Materia几个月之后,以及深刻体验过所有潜在功能之后,我非常感谢你们的卓越工作和持续稳定的升级服务。 Total Materia始终是用来达成这一目的唯一工具。
M. Manfredini Bonfiglioli Industrial Gearmotors 博洛尼亚, 意大利
我们的目标很简单,就是让 Total Materia成为全球工程师在材料领域的首选一站式解决方案
Prof. Dr. Viktor Pocajt, CEOKey to Metals AG
Copper and copper alloys are some of the most versatile engineering materials available. The combination of physical properties such as strength, conductivity, corrosion resistance, machinability and ductility make copper suitable for a wide range of applications. These properties can be further enhanced with variations in composition and manufacturing methods.
Copper is the oldest metal used by man, its use dates back to prehistoric times. Copper has been mined for more than 10,000 years with a copper pendant found in current day Iraq being dated to 8700BC.
By 5000BC copper was being smelted from simple copper oxides. The first high-strength copper alloy gave its name to an era, the Bronze Age, which followed the Copper (Chalcolithic) Age more than 4,000 years ago. Early bronzes consisted of copper and tin, and the “phosphorus bronzes” that we now use for electrical purposes (which contain around 5% tin and very little phosphorus) have been called the direct descendents of these primitive alloys. Phosphorus bronzes cannot be regarded as having high conductivity, since their conductivity is less than 10% that of pure copper.
Copper is found as native metal and in the minerals cuprite, malachite, azurite, chalcopyrite and bornite. It is also often a by-product of silver production. Sulfides, oxides and carbonates are the most important ores.
The primary selection criteria for copper and copper alloys include:
Copper and copper alloys can be used in an extraordinary range of applications. Some of these applications include:
The largest end use for copper is in the building industry. Within the building industry the use of copper-based materials is broad. Construction industry related applications for copper include:
Commercially pure coppers are very soft and ductile, containing up to about 0.7% total impurities. These materials are used for their electrical and thermal conductivity, corrosion resistance, appearance and color, and ease of working. They have the highest conductivity of the engineering metals and are very ductile and easy to braze, and generally to weld. Typical applications include electrical wiring and fittings, busbars, heat exchangers, roofs, wall cladding, tubes for water, air and process equipment.
High copper alloys contain small amounts of various alloying elements such as beryllium, chromium, zirconium, tin, silver, sulfur or iron. These elements modify one or more of the basic properties of copper, such as strength, creep resistance, machinability or weldability. Most of the uses are similar to those given above for coppers, but the conditions of application are more extreme.
Brasses are copper zinc alloys containing up to about 45% zinc, with possibly small additions of lead for machinability, and tin for strength. Copper zinc alloys are single phase up to about 37% zinc in the wrought condition. The single phase alloys have excellent ductility, and are often used in the cold worked condition for better strength. Alloys with more than about 37% zinc are dual phase, and have even higher strength, but limited ductility at room temperature compared to the single phase alloys. The dual phase brasses are usually cast or hot worked.
Typical uses for brasses are architecture, drawn & spun containers and components, radiator cores and tanks, electrical terminals, plugs and lamp fittings, locks, door handles, name plates, plumbers hardware, fasteners, cartridge cases, cylinder liners for pumps.
Brasses are divided into two classes. These are:
There are three main families of wrought alloy brasses:
Cast brass alloys can be broken into four main families:
Bronzes are alloys of copper with tin, plus at least one of phosphorus, aluminum, silicon, manganese and nickel. These alloys can achieve high strengths, combined with good corrosion resistance. They are used for springs and fixtures, metal forming dies, bearings, bushes, terminals, contacts and connectors, architectural fittings and features. The use of cast bronze for statuary is well known.
Copper nickel are alloys of copper with nickel, with a small amount of iron and sometimes other minor alloying additions such as chromium or tin. The alloys have outstanding corrosion resistance in waters, and are used extensively in sea water applications such as heat exchangers, condensers, pumps and piping systems, sheathing for boat hulls.
Nickel silvers contain 55–65% copper alloyed with nickel and zinc, and sometimes an addition of lead to promote machinability. These alloys get their misleading name from their appearance, which is similar to pure silver, although they contain no addition of silver. They are used for jewelry and name plates and as a base for silver plate (EPNS), as springs, fasteners, coins, keys and camera parts.
Properties of Copper Alloys
Corrosion Resistance of Copper. All copper alloys resist corrosion by fresh water and steam. In most rural, marine and industrial atmospheres copper alloys are also resistant to corrosion. Copper is resistant to saline solutions, soils, non-oxidizing minerals, organic acids and caustic solutions. Moist ammonia, halogens, sulfides, solutions containing ammonia ions and oxidizing acids, like nitric acid, will attack copper. Copper alloys also have poor resistance to inorganic acids.
The corrosion resistance of copper alloys comes from the formation of adherent films on the material surface. These films are relatively impervious to corrosion therefore protecting the base metal from further attack.
Ductility can be restored by annealing. This can be done either by a specific annealing process or by incidental annealing through welding or brazing procedures.
There are four common ways to harden (strengthen) copper. A fifth, spinodal composition, is currently used commercially only in certain copper-nickel-tin alloys. Combinations of strengthening mechanisms are often used to provide higher mechanical properties in high-copper alloys.
Strain Hardening. The application of cold work, usually by rolling or drawing, hardens copper and copper alloys. Strength, hardness and springiness increase, while ductility decreases. Conductivity is reduced to a small extent, normally not to the extent that it hinders use of the alloys in electrical products. The effect of cold work can be removed by annealing, in which case full conductivity returns. Strain hardening is the only strengthening mechanism that can be used with pure copper.
Solid-Solution Hardening. Alloying elements that remain dissolved in solidified copper strengthen the lattice structure. If the addition is within the limit of the element’s solid solubility, no secondary phases form, and the appearance under the microscope is similar to that of pure copper.
All dissolved additions to copper reduce electrical conductivity, making the balance between strengthening gained and conductivity lost necessarily a compromise. The extent of this effect on conductivity varies widely from element to element. Cadmium additions, for example, affect conductivity least, while others, such as phosphorus, tin and zinc, are more detrimental. In any case, cold working can be used to increase strength beyond the limits of solid solution hardening, and the two strengthening mechanisms are frequently used in combination.
Precipitation Hardening. Some alloying elements exhibit higher solubility in solid copper when hot than when cold. This means they can be dissolved by solution treatment (solution annealing) at high temperatures, around 950–1000°C, and then removed from solution by a precipitation (or "aging") treatment at a lower temperature, commonly around 1200°F (650°C). This practice produces a fine precipitate throughout the metal that strengthens the matrix without spoiling the conductivity. In fact, conductivity improves as precipitates drop out of solution. Beryllium, chromium and zirconium are common examples of this type of addition. Combinations of nickel with silicon or phosphorus are also useful.
Dispersion Strengthening. Particles of insoluble or even inert materials can also be finely distributed within a copper matrix by metallurgical, mechanical or chemical means, i.e., without having to resort to heat treatment. Being insoluble, the particles have little effect on electrical conductivity.
Date Published: Apr-2009
输入搜索词:
搜索项
全文 关键字
标题 摘要
With Total Materia finding information about a metal standard specification, its current status and the materials it defines is one click away.
Within seconds it is also possible for you to find related detailed material property data or search equivalent materials starting from the Total Materia standard list.
To get started, click on the standard list button in the menu bar.
By simply selecting a Standard Development Organization (SDO) and/or typing the standard number, you receive immediate results from the multi-lingual database containing over 30,000 standards.
For example, you can review all metal standards from UNI by selecting this SDO from the popup.
The result list consists of over 1400 UNI metal standards. Information includes: standard description, year of last issue, current status (valid, replaced, etc.) and a hot link to the materials defined by this standard.
By simply clicking the materials hot link, you can see a list of metal materials defined by the selected standard.
From the list of materials, you can review detailed properties and equivalents of each material.
For you’re a chance to take a test drive of the Total Materia database, we invite you to join a community of over 150,000 registered users through the Total Materia Free Demo.