深拉伸用钢:第一部分
非铁合金的热机械处理(TMT):第一部分
DataPLUS 模块提供上万种金属材料和非金属材料的腐蚀数据、焊接性能、尺寸与公差信息以及涂层信息。 点击这里了解更多。
Overview of Total Materia database 2022 年 1月 12日
Overview of Total Materia database 2022 年 1月 13日
在使用Total Materia几个月之后,以及深刻体验过所有潜在功能之后,我非常感谢你们的卓越工作和持续稳定的升级服务。 Total Materia始终是用来达成这一目的唯一工具。
M. Manfredini Bonfiglioli Industrial Gearmotors 博洛尼亚, 意大利
我们的目标很简单,就是让 Total Materia成为全球工程师在材料领域的首选一站式解决方案
Prof. Dr. Viktor Pocajt, CEOKey to Metals AG
The high temperature and/or high strength-to-weight requirements of aerospace structures, advanced propulsion systems, high-speed aircraft and deep submergence vessels have stimulated the development of certain nonferrous metals that can be used in these applications. From the point of view of catastrophic fracture, the most important and interesting of the nonferrous metals are the BCC refractories, high strength aluminum alloys and the HCP metals, magnesium, beryllium, and titanium. Although low strength aluminum, copper- and nickel-base alloys are used extensively as structural materials, these FCC metals are quite ductile and tough in the absence of extreme environments and need not to be discussed here.
The high temperature and/or high strength-to-weight requirements of aerospace structures, advanced propulsion systems, high-speed aircraft and deep submergence vessels have stimulated the development of certain nonferrous metals that can be used in these applications.
In addition to the failures that arise because of extreme environmental conditions, e.g., high operating temperatures and corrosive environments, or fatigue, there are also brittle failures that occur in some of these metals because of their inherent low ductility and toughness. These failures can cause problems in fabrication and in certain service applications e.g., at the low temperatures that exist in outer space.
From the point of view of catastrophic fracture, the most important and interesting of the nonferrous metals are the BCC refractories, high strength aluminum alloys and the HCP metals, magnesium, beryllium, and titanium. Although low strength aluminum, copper- and nickel-base alloys are used extensively as structural materials, these FCC metals are quite ductile and tough in the absence of extreme environments and need not to be discussed here.
Cleavage is the only mode of unstable fracture in the BCC refractory and low strength HCP metals, so that the effect of composition and microstructure on toughness and ductility can be described by variations in impact and tensile-transition temperatures; low-energy tear is the primary mode of unstable fracture in the high strength alloys so that their variations in toughness appear as variations in G1c, DWTT energy, Cv(max), and tensile ductility.
As in the case of steels, alloy content and processing conditions affect the toughness of nonferrous metals by affecting their microstructures, which, in turn, determine their toughness.
In polycrystalline pure magnesium and in commercial magnesium alloys a significant number of microcracks are initiated at a strain which is about equal to one-half of the total strain to fracture. A significant amount of the total plastic deformation therefore occurs in the microcracks grow and link up in the final stages of fracture. The ductility of these alloys increases abruptly with increasing testing temperature at temperatures slightly above ambient. This ductility rise results from a microstructural instability, that is, recovery and recrystallization during straining, of the metals at the testing temperature.
At room temperature, failure of polycrystalline high-purity magnesium occurs on various crystallographic planes of high index as well as by an intergranular mechanism. Fracture at low temperatures is also intergranular along with complex transcrystalline modes.
The addition of lithium to magnesium alloy has an interesting effect on low-temperature fracture behavior. The stress for prismatic slip is reduced relative to that for basal slip, and thereby the low-temperature ductility increased. The greater facility for slip is also reflected in a decrease in strain-hardening behavior as barriers to plastic deformation can be more easily circumvented. In magnesium alloys of high lithium content (14.5%), fracture even at 78°K occurs by necking, and there is no leveling of the fracture stress as in the case of pure magnesium.
Certain alloying additions stabilize the α-phase. Among these are aluminum and the interstitial elements carbon, hydrogen, nitrogen, and oxygen. Most alloying elements, such as chromium, columbium, copper, iron, manganese, molybdenum, tantalum, and vanadium stabilize the β-phase to the extent that a mixed α-β-phase or an entirely β-phase alloy can persist down to room temperature.
Some elements, notably tin and zirconium, behave as neutral solutes in titanium and have little effect on the transformation temperature, acting as strengtheners of the α-phase. The single-phase α-alloys are not heat-treatable, but both the α-β-alloys and the β-alloys can be strengthened by heat treatment. The yield strengths of these alloys range from 30,000 psi for commercially pure titanium up to 250,000 psi for certain α-β-alloys.
One group of elements that affects the low-temperature fracture behavior, especially of notched specimens, are the interstitials. Because of the deleterious effect of interstitials, extra-low interstitials grades (ELI) are available for use where structural reliability at low temperatures is of concern.
Hydrogen, which can embrittle titanium, is soluble to a negligible extent in beryllium and has no effect on the transition from ductile to brittle behavior. Oxygen is able to embrittle beryllium, but there is no quantitative measure of the effect.
Date Published: Apr-2005
输入搜索词:
搜索项
全文 关键字
标题 摘要
Total Materia Extended Range includes the largest database of fracture mechanics parameters for hundreds of metal alloys and heat treatments conditions. K1C, KC, crack growth and Paris law parameters are given, with the corresponding graph of crack growth.
Monotonic properties are added for the reference, as well as estimates of missing parameters based on monotonic properties where applicable.
Enter the material of interest into the quick search field. You can optionally narrow your search by specifying the country/standard of choice in the designated field and click Search.
After clicking the material from the resulting list, a list of subgroups that are standard specifications appears.
Because Total Materia Extended Range fracture mechanics parameters are neutral to standard specifications, you can review fracture mechanics data by clicking the appropriate link for any of the subgroups.
The data are given in a tabular format, with the Paris curve (Region II) where applicable. Explicit references to the data sources are given for each dataset.
For you’re a chance to take a test drive of the Total Materia database, we invite you to join a community of over 150,000 registered users through the Total Materia Free Demo.