High-strength carbon and low-alloy steels have yield strengths greater than 275 MPa and can be more or less divided into four classes: As-rolled carbon-manganese steels, As-rolled high-strength low-alloy (HSLA) steels, Heat-treated, Heat-treated low-alloy steels.
These four types of steels have higher yield strengths than mild carbon steel in the as-hot-rolled condition. The heat-treated low-alloy steels and the as-rolled HSLA steels also provide lower ductile-to-brittle transition temperatures than do carbon steels.
These four types of high-strength steels have some basic differences in mechanical properties and available product forms. In terms of mechanical properties, the heat-treated (quenched and tempered) low-alloy steels offer the best combination of strength and toughness.
Mild (low-carbon) steels are normally considered to have carbon contents up to 0.25% C with about 0.4 to 0.7% Mn, 0.1 to 0.5% Si and some residuals of sulfur, phosphorus, and other elements. These steels are not deliberately strengthened by alloying elements other than carbon; they contain some manganese for sulfur stabilization and silicon for deoxidation. Mild steels are mostly used in the as-rolled, forged, or annealed condition and are seldom quenched and tempered.
The largest category of mild steels is the low-carbon (<0.08% C, with <0.4% Mn) mild steels used for forming and packaging. Mild steels with higher carbon and manganese contents have also been used for structural products such as plate, sheet, bar, and structural sections.
High-strength structural carbon steels have yield strengths greater than 275 MPa and are available in various product forms:
Normalizing involves air-cooling from austenitizing temperatures and produces essentially the same ferrite-pearlite microstructure as that of hot-rolled carbon steel, except that the heat treatment produces a finer grain size. This grain refinement makes the steel stronger, tougher, and more uniform throughout.
Quenching and tempering, that is heating to about 900oC, water quenching, and tempering at temperatures of 480 to 600oC or higher, can provide a tempered martensitic or bainitic microstructure that results in better combinations of strength and toughness. An increase in the carbon content to about 0.5%, usually accompanied by an increase in manganese, allows the steels to be used in the quenched and tempered condition.
Except for plain carbon steels that are micro alloyed with just vanadium, niobium, and/or titanium, most low-alloy steels are suitable as engineering quenched and tempered steels and are generally heat treated for engineering use. Low-alloy steels with suitable alloy compositions have greater hardenability than structural carbon steel and, thus, can provide high strength and good toughness in thicker sections by heat treatment. Their alloy contents may also provide improved heat and corrosion resistance. However, as the alloy contents increase, alloy steels become more expensive and more difficult to weld. Quenched and tempered structural steels are primarily available in the form of plate or bar products.
Alloying Elements and Their Effect on Hardenability and Tempering. Quenched and tempered steels have carbon contents in the range of 0.10 to 0.45%, with alloy contents, either singly or in combination, of up to 1.5% Mn, 5% Ni, 3% Cr, 1% Mo, 0.5% V, 0.10% Nb; in some cases they contain small additions of titanium, zirconium and/or boron. Generally, the higher the alloy content, the greater the hardenability and the higher the carbon content, the greater the available strength. The response to heat treatment is the most important function of the alloying elements in these steels.
Microalloyed Quenched and Tempered Grades. Although fittings with 0.69% Mn and induction bends use quenching and tempering as a standard practice, mild steels (plain, low-carbon steels with less than 0.7% Mn) with microalloying additions of vanadium, niobium, or titanium are seldom used as quenched and tempered steels.
However, elements such as boron and vanadium are considered as substitutes for other elements that enhance hardenability. The titanium was added in order to form titanium nitride, thereby retaining an increased amount of vanadium in solution. This provided for a more efficient use of vanadium as a hardenability agent.
Some scientist investigated completely V-substituted variants of 4140 base series (0.4C-1Cr) with titanium additions, as well as partially V-substituted variants with and without titanium additions. These studies concluded that:
Quenched and tempered alloy steels can offer a combination of high strength and good toughness. In addition, quenched and tempered alloy steel plate is available with ultrahigh strengths and enhanced toughness. Enhanced toughness and high strength are achieved in the nickel-chromium-molybdenum alloys, which include steels such as ASTM A 543, HY-80, HY-100 and HY-130. These steels use nickel to improve toughness.
High-Nickel Steels for Low-Temperature Service. For applications involving exposure to temperatures from 0 to -195oC, the ferritic steels with high nickel contents are typically used. Such applications include storage tanks for liquefied hydrocarbon gases and structures and machinery designed for use in cold regions. These steels utilize the effect of nickel content in reducing the impact transition temperature, thereby improving toughness at low temperatures. Carbon and alloy steel castings for subzero-temperature service are covered by ASTM standard specification A 757.
The 5% Ni alloys for low-temperature service include HY-130 and ASTM A 645. For steel purchased according to ASTM A 645 minimum Charpy V-notch impact requirements for 25 mm plate are designated at -170oC for hardened, tempered, and reversion-annealed plate.
Double normalized and tempered 9% nickel steel is covered by ASTM A 353, and quenched and tempered 8% and 9% nickel steels are covered by ASTM A 553 (types I and II). For quenched and tempered material, the minimum lateral expansion in Charpy V-notch impact tests is 0.38 mm. Testing of typical tensile properties of 5% and 9% Ni steels at room temperature and at subzero temperatures shows that yield and tensile strengths increase as testing temperature is decreased. These steels remain ductile at the lowest resting temperatures.
Ferritic nickel steels are too tough at room temperature for valid fracture toughness (KIc) data to be obtained on specimens of reasonable size, but limited fracture toughness data have been obtained on these steels at subzero temperatures by the J-integral method. The 5% Ni steel retains relatively high fracture toughness at -162oC and the 9% Ni steel retains relatively high fracture toughness at -196oC. These temperatures approximate the minimum temperatures at which these steels may be used.
Total Materia is the leading materials information platform, providing the most extensive information on metallic and non-metallic material properties and other material records.
All this information is available in Total Materia Horizon, the ultimate materials information and selection tool, providing unparalleled access to over 540,000 materials as well as, curated and updated reference data.
Total Materia Horizon includes: