Cross-reference tables for DIN aluminium wrought alloys: Part One

Abstract

This article provides comprehensive cross-reference tables that correlate alphanumeric and numeric temper designations for wrought aluminum alloys according to DIN 1788 and DIN 1790 standard specifications. The coverage encompasses aluminum sheets and strips with thickness ranging from 0.021 to 0.350 mm, as well as aluminum alloy wires. These cross-reference tables serve as essential tools for engineers, manufacturers, and quality control professionals working with DIN-specified aluminum materials. The standardized temper designations ensure consistent material properties and facilitate proper material selection for various industrial applications. Understanding these correlations is crucial for maintaining compliance with German industrial standards and ensuring optimal performance in aluminum fabrication processes.


Introduction to DIN Aluminum Standards

The German Institute for Standardization (Deutsches Institut für Normung) has established comprehensive standards for aluminum wrought alloys that are widely recognized throughout European manufacturing industries. These standards provide precise specifications for material properties, dimensional tolerances, and quality requirements that ensure consistent performance across various applications.

Understanding DIN 1788: Aluminum Sheets and Strips

DIN 1788 specifically addresses the mechanical properties of sheets and strips manufactured from wrought aluminum and aluminum alloys. This standard covers materials with thickness measurements ranging from 0.021 to 0.350 mm, making it particularly relevant for applications requiring thin aluminum components.

The standard establishes critical parameters including tensile strength, yield strength, elongation values, and hardness requirements. These specifications ensure that aluminum sheets and strips meet the demanding requirements of industries such as automotive manufacturing, aerospace engineering, and electronic component production.

Manufacturers utilizing DIN 1788 specifications benefit from standardized quality assurance protocols that guarantee material consistency. The temper designations within this standard provide clear guidance for heat treatment processes and expected mechanical properties following various processing methods.

Table 1. DIN 1788 standard specifications

Alphanumeric designation (Kurzzeichen) Numeric designation
(Werkstoff-nummer)
AI99,98R W4 3.0385.10
  F14 .32
Al99,5 W6 3.0255.10
  W7 .10
  F9 .24
  F11 .26
  G11 .27
  F13 .30
  G13 .31
  F15 .32
  F18 .34
Al99 W6 3.0205.10
  W7 .10
  W8 .10
  F12 .26
  F14 .30
  F16 .32
  F19 .34
AlFeSi W8 3.0915.10
  F11 .24
  G11 .25
  F13 .26
  G13 .27
  F15 .28
  G15 .29
  F17 .30
  F20 .32
AlMnCu W10 3.0517.10
  G13 .25
  F15 .26
  G15 .27
  F17 .28
  G17 .29
  F19 .30
AlMn0.5Mg0.5 W11 3.0505.10
  G16 .25
  F17 .26
  G17 .27
  F20 .28
  G20 .29
  F22 .30
  F24 .32
AlMn1Mg0,5 W13 3.0525.10
  G17 .25
  G21 .31
  F25 .32
AlMn1Mg1 W16 3.0526.10
  F19 .24
  G19 .25
  F21 .26
  G21 .27
  F23 .28
  G23 .29
  F25 .30
  G25 .31
  F28 .32
AlMg1 W11 3.3315.10
  G12 .25
  F15 .26
  G15 .27
  F17 .28
  F19 .30
  F22 .32
AlMg2,5 W18 3.3523.10
  G26 .29
  F32 .34
AlMg3 W19 3.3535.10
  F24 .26
  G24 .27
  F27 .28
  G27 .29
  F29 .30
  G29 .31
  F32 .32
AlMg4,5 G34 3.3345.31
  F37 .32
  G37 .33

Exploring DIN 1790: Aluminum Wire Specifications

DIN 1790 focuses exclusively on the mechanical properties of wire products manufactured from wrought aluminum and aluminum alloys. This standard addresses the unique challenges associated with wire drawing processes and the resulting material characteristics.

Aluminum wire applications span numerous industries, including electrical conductors, welding consumables, and mechanical fastening systems. The DIN 1790 standard ensures that these wires maintain consistent electrical conductivity, mechanical strength, and dimensional accuracy throughout the manufacturing process.

The temper designations specified in DIN 1790 account for the work hardening effects that occur during wire drawing operations. Understanding these designations enables manufacturers to select appropriate starting materials and processing parameters to achieve desired final properties.

Table 2. DIN 1790 standard specifications

Alphanumeric designation (Kurzzeichen) Numeric designation
(Werkstoff-nummer)
Al99,8R W4 3.0385.10
  F7 .26
  F11 .30
Al99,9 W4 3.0305.10
  F7 .26
  F11 .30
Al99,8 W6 3.0285.10
  F9 .26
  F12 .30
Al99,5 W7 3.0255.10
  F10 .26
  F14 .30
Al99 W8 3.0205.10
  F11 .26
  F15 .30
Al99,9Mg0,5 W7 3.3308.10
  F10 .26
  F13 .30
Al99,9Mg1 W10 3.3318.10
  F13 .26
  F16 .30
Al99,85Mg0,5 W7 3.3307.10
  F10 .26
  F13 .30
Al99,85Mg1 W10 3.3317.10
  F13 .26
  F16 .30
AlMn W10 3.0515.10
  F13 .26
  F16 .30
AlMg1 W10 3.3315.10
  F14 .26
  F19 .30
AlMg2Mn0,3 W15 3.3525.10
  F19 .24
  F23 .28
  G22 .29
AlMg2,5 W17 3.3523.10
  F21 .24
  F25 .28
  G24 .29
AlMg3 W18 3.3535.10
  F23 .24
  F27 .28
  G26 .29
AlMg5 W27 3.3555.10
  F31 .26
  F35 .30
  G34 .31
AlMgsSi0,5 W9 3.3206.10
  F12 .26
  F15 .41
  F20 .53
  F22 .61
  F27 .56
  F30 .73
AlMgSi1 W11 3.2315.10
  F15 .26
  F20 .41
  F25 .53
  F28 .61
  F32 73
AlCu2,5Mg0,5 F18 3.1305.26
  F27 .41
  F31 .53
AlCuMg1 F22 3.1325.26
  F38 .41
  F42 .53
AlCuMg2 F26 3.1355.26
  F42 .41
  F48 .53
AlZn4,5Mg1 F35 3.4335.61
AlZnMgCu0,5 F20 3.4345.26
  F46 .46
AlZnMgCu1,5 F25 3.4365.26
  F51 .61
  F55 .73

Temper Designation Systems in Aluminum Processing

The correlation between alphanumeric and numeric temper designations represents a critical aspect of aluminum alloy specification and quality control. These designation systems provide standardized methods for communicating material conditions and expected properties throughout the supply chain.

Alphanumeric designations typically utilize letter codes combined with numerical values to indicate specific heat treatment conditions, work hardening levels, and aging processes. Numeric designations offer alternative coding systems that may align with different international standards or legacy specification systems.

Cross-reference tables eliminate confusion and potential errors that could arise from misinterpretation of temper designations. They serve as essential tools for procurement professionals, quality engineers, and production managers who must ensure material compatibility across different specification systems.

Applications and Industry Relevance

The aluminum sheets, strips, and wires covered by DIN 1788 and DIN 1790 standards find applications across diverse industrial sectors. In the automotive industry, thin aluminum sheets provide lightweight solutions for body panels and structural components while maintaining excellent corrosion resistance and formability.

Electronic manufacturing relies heavily on precise aluminum strips for heat sinks, electromagnetic shielding, and component housings. The dimensional accuracy and consistent mechanical properties specified in these DIN standards ensure reliable performance in demanding electronic applications.

Aluminum wire products serve critical roles in electrical infrastructure, providing cost-effective alternatives to copper conductors in many applications. The mechanical properties defined in DIN 1790 ensure that these wires maintain structural integrity under various installation and service conditions.

Quality Assurance and Compliance Considerations

Adherence to DIN aluminum standards requires comprehensive quality management systems that monitor material properties throughout the production process. Regular testing and verification procedures ensure that finished products meet the specified mechanical properties and dimensional requirements.

Documentation and traceability systems play essential roles in maintaining compliance with DIN standards. Manufacturers must maintain detailed records of heat treatment processes, mechanical testing results, and dimensional inspections to demonstrate conformity with standard requirements.

The cross-reference tables provided in this article support quality assurance efforts by enabling accurate material identification and specification verification. This capability reduces the risk of material substitution errors and ensures that end products meet their intended performance requirements.

June, 2002

Finden und vergleichen Sie sofort Werkstoffe aus verschiedenen Normen!

Total Materia Horizon enthält detaillierte und präzise Eigenschaftsinformationen für Hunderttausende von Werkstoffen nach allen Normen weltweit, die monatlich aktualisiert werden.

Finden und vergleichen Sie sofort Werkstoffe aus verschiedenen Normen!

Holen Sie sich ein KOSTENLOSES Testkonto bei Total Materia Horizon und schließen Sie sich einer Gemeinschaft von über 500.000 Benutzern aus mehr als 120 Ländern an.

Kontaktiere uns
Lösen Sie Ihre Materialherausforderungen.
Erfahren Sie, wie wir helfen können.