In heat treating of tin-rich alloys, it is difficult to secure an effective and permanent degree of hardening. Tin melts at 232°C (505 K), and therefore room temperature (about 295 K) is well over one-half the absolute melting point. It follows that high-temperature behavior such as recrystallization and recovery can occur in fairly short times, even at room temperature. Tin is also an unusual metal because it can work soften under certain conditions, and so heat treating can be used in these cases to restore some of the original hardness and strength.
Heat treating of tin-rich alloys has been practiced for bearing alloys, pewter ware and organ pipe alloys. Some of the principles underlying these applications will be reviewed first.
The greatest improvement obtainable in binary tin-antimony alloys occurs in the alloy that contains 9% Sb; a hardness of 21 HB and a tensile strength of 51 MPa (7.4 ksi) can be increased to 26 HB and 65 MPa (9.4 ksi). This alloy is tempered for 48 h at 100°C (212°F) after being quenched from 225°C (435°F). During this tempering treatment, ductility decreases from 20 to 10% elongation.
It was found that the strengthening effect of cadmium in the terminal solution tin phase (alpha) is much greater than that of antimony. In this study, the maximum stable values obtained in alloys containing 7 to 9% Sb and 5 to 7% Cd were as follows: tensile strength 108 MPa (15.7 ksi), elongation 15%, and hardness 35 HB. The presence of the sigma phase (principally SbSn) as primary cuboids had no effect on strength or hardness, but the presence of primary epsilon (CdSb) destroyed the useful mechanical properties.
Therefore, alloys containing cadmium generally use compositions that restrict the formation of the primary (CdSb) epsilon phase. The maximum combination of strength, ductility, and hardness is obtained in alloys that have finely dispersed precipitates of the sigma and epsilon phases in an alpha matrix, or finely dispersed epsilon in a matrix of alpha with a eutectoid of (α + γ). These structures are typically achieved by quenching or rapid cooling from elevated temperatures to avoid precipitation of primary sigma and epsilon.
Additional heat-treatment studies have been directed to a group of cold-workable tin-rich alloys containing 3 to 8% Cd and 1 to 9% Sb. Two forms of hardening were observed on quenching of these alloys from 185 to 200°C (365 to 390°F). One form results from the change in solubility of antimony in tin or in the beta phase. The other, which produces more intensive hardening, is analogous to hardening of binary cadmium-tin alloys by quenching and depends on suppression of eutectoid decomposition of the beta phase. Permanent improvement results in the first instance. Therefore, a maximum tensile strength of 101 MPa (14.6 ksi) was achieved in a Sn-3Cd-7Sb alloy that was quenched from 190°C (375°F) and then aged for either 24 h at 100°C or 18 months at room temperature.
Further studies have been carried out on tin-base alloys containing 7 to 10% Sb and 0 to 3% Cd in an effort to locate a bearing alloy that would be suitable at mildly elevated temperatures. In this composition range, it was found that alloys containing 0.5 to 2% Cd (but not 3%) can be strengthened considerably by quenching and tempering.
Optimum properties (tensile strength 92 Mpa) were obtained in a Sn-9Sb-1.5Cd alloy quenched from 220°C (430°F) and then aged for 1000 h at 140°C. This alloy consists of finely divided sigma and epsilon phases in a matrix of alpha.
The hardness values of spun pewter ware, or of other articles that have been manufactured by mechanically working the metal, can be restored by heat treatment at temperatures from 110 to 150°C. A tin alloy containing 6% Sb and 2% Cu hardens to 90% of the hardness of the as-cast material after annealing for 1 h at 200 °C. Longer annealing times at lower temperatures have smaller but similar effects on the recovery from work softening.
Total Materia est la principale plateforme d'information sur les matériaux. Elle fournit les informations les plus complètes sur les propriétés des matériaux métalliques et non métalliques et sur d'autres données relatives aux matériaux.
Toutes ces informations sont disponibles dans Total Materia Horizon, l'outil ultime d'information et de sélection des matériaux, qui offre un accès inégalé à plus de 540 000 matériaux ainsi qu'à des données de référence sélectionnées et mises à jour.
L'ensemble de Materia Horizon comprend